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NONRELATIVISTIC LIMIT IN THE SELF-DUAL ABELIAN
CHERN-SIMONS MODEL

JONGMIN HAN AND KYUNGWOO SONG

ABSTRACT. We consider the nonrelativistic limit in the self-dual Abelian
Chern-Simons model, and give a rigorous proof of the limit for the radial
solutions to the self-dual equations with the nontopological boundary
condition when there is only one-vortex point. By keeping the shooting
constant of radial solutions to be fixed, we establish the convergence of
radial solutions in the nonrelativistic limit.

1. Introduction

The (2+1) dimensional self-dual Chern-Simons theories involve charged scal-
ar fields minimally coupled to gauge fields whose dynamics is provided by a
Chern-Simons term. In Chern-Simons theories, the vortex field is charged both
electrically and magnetically, and can carry a fractional electric charge pro-
portional to the coeflicient of the Chern-Simons term. Chern-Simons theories
have attracted much interest in various areas of anyonic quantum physics such
as fractional quantum Hall effects, anyonic superconductivity, and Aharovnov-
Bohm scattering. One of the important features of the self-dual Chern-Simons
theories is that in the static case, the self-dual structure allows solutions to
describe the existence of stable multi-vortex points. Moreover, the self-dual
Chern-Simons theories permit a realization with either relativistic or nonrel-
ativistic dynamics for the scalar fields. We refer to [6] for a survey on the
self~dual Chern-Simons theories.

In this paper, we are interested in Abelian Chern-Simons theories. The
relativistic Abelian Chern-Simons model was suggested by Hong-Kim-Pac [7]
and Jackiw-Weinberg [10], where they considered a model of charged vortices
with gauge field dynamics governed only by the Chern-Simons term without the
Maxwell term. The self-dual structure is attained with a special choice of the
Higgs potential by the 6th order. The relativistic Abelian Chern-Simons model
enjoys very rich mathematical structures, and has been widely studied related
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to blow-up analysis. See [15] for more information on recent mathematical
results about the self-dual equations.

On the other hand, one can consider the nonrelativistic Abelian Chern-
Simons model which was introduced by Jackiw-Pi in [8, 9]. This model de-
scribes a nonrelativistic field theory for the second-quantized N-body system
of point particles with Chern-Simons interaction. In [9] the authors formally
found that the relativistic model is reduced to the nonrelativistic model in the
limit ¢ — oo, which we call the nonrelativistic limit. Here, ¢ denotes the veloc-
ity of light. It is quite interesting to verify the nonrelativistic limit rigorously
by mathematical arguments.

The nonrelativistic limit problem can be considered for three cases: the
self-dual equations, the nonself-dual static equations, and the time-dependent
equations. The purpose of this paper is to prove the nonrelativistic limit for
the solutions to the self-dual equations.

The outline of this paper is as follows. In the next section, we review the
relativistic and nonrelativistic Abelian Chern-Simons models, and derive the
nonrelativistic limit formally in the Lagrangian level following the argument of
[9]. The main difference of our derivation from the argument of [9] is that we
vary the Chern-Simons coupling constant as ¢ — oo, which enables us to obtain
the nonrelativistic model without any terms containing c¢. In Section 3, we
consider radially symmetric nontopological solutions to the self-dual equations
when there is only one-vortex point. We find a condition which guarantees the
convergence of these solutions in the nonrelativistic limit, and state the main
theorem. The proof of the main theorem is given in Section 4.

2. Models

Let us consider (2 + 1)-dimensional Minkowski space R1'? with the metric
diag(1,—1,~-1). In other words, the metric is given by

ds? = dx} — da? — dx2, z¢=t/c,

where ¢ > 0 is the velocity of light. The metric is used to raise or lower indices.

The Lagrangian density of the relativistic Abelian Chern-Simons model is given
by

£ 4 . h2 4
(21) L7 =~ FapA, + K2DadDo6 — —LIo(l6f — o),

where all the Greek indices run over 0,1,2. Here k > 0 is the Chern-Simons
coupling constant representing the strength of the Chern-Simons term, £ is the
Plank constant, ¢ is the charge of electron, & > 0 is the symmetry breaking
parameter, ¢ : R? — C is the Higgs field, A, : R2 — R is the gauge field,
Dy = 8, —i(g/ch)Aq is the covariant derivative with i = +/—1, and F,p =
OJaAp — 0gA, is the field strength.
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We say that (¢, A,) is gauge equivalent to (¢, B,) if there exists a smooth
function x such that

(6, Ba) = (e%¢, Aa + BaX).

It is easily verified that the Lagrangian £ and its Euler-Lagrange equations
are invariant under the gauge transformation. We are interested in the station-
ary solutions of the Euler-Lagrange equations for (2.1). The static variational
equation for Ay, often called the Gauss constraint equation, gives

(2.2) kF1y — 2 |¢|2A0 =0.

Using (2.2), we obtain the static relativistic Abelian Chern-Simons energy func-
tional

23) %= [ WD + RIDsoP + S T2 + Chio (o - o)

Under suitable decay assumptions, we can rewrite the energy functional as

2
ER:/ <h2|D1¢ﬂ:iD2¢|2+ (KCFlz |¢|(|¢)|2 )) )dil?:l:qho'zq)R’
R? |¢]
where
(2.4) o1 / Fiy
C Jwr2

is the magnetic flux. If ®# is positive (negative), then we choose the upper
(lower) sign. Hence we have the energy lower bound

ER > qho®| B,
which is achieved by the self-dual equations
(2.5) Dip+iDep = 0,
(25) Fiox 2L 0R(gf —o?) = o

The boundary conditions for ¢ are obtained in two ways from the finite energy
condition:

o) { ¢(e)] ~ o as || - oo,

[6(@)] =0 as |z[ — oo

The former is called topological and the latter nontopological.

Let us take the upper signs in (2.5) and (2.6). The lower sign case can
be obtained by the conjugate transformation (¢, A) — (¢, —A). To examine
the self-dual equations further, we employ the classical Jaffe-Taubes arguments
[11]. In fact, (2.5) implies that ¢ is holomorphic up to a nonvanishing multiple



1000 JONGMIN HAN AND KYUNGWOO SONG

factor and has exactly N zeros allowing multiplicities. Thus in the light of the
gauge invariance we may assume that ¢ takes the form

k
1 .
(2.8) ¢(z) = exp ( Eu(x) +1 Z n; arg(x — p;) ),
j=1
where the points p1, ..., px, called the vortex points, are the distinct zeros of
¢ with multiplicities nq,...,n, respectively. Obviously, ny + --- + ng = N.
Then the equation (2.6) reduces to
4q* 9 ul
(2.9) Ay = We“(e“ -0°) + 47Tan6pj,
j=1

where §;,, denotes the Dirac measure concentrated on the point p;j. The bound-
ary conditions of ¢ are rephrased by

topological: u(z) —»2lno as |z] — oo,
nontopological: u(z) - —o0 as |z| — oco.

Conversely, once we find a solution u of (2.9), we recover A from (2.5) by the
formula

(2.10) Ay +idy = —2‘377“ Ol ¢,

where 8 = (0 +14d2)/2. Thus (2.5) and (2.6) are equivalent to (2.9) via the
relations (2.8) and (2.10), and we will focus on the equation (2.9). One can find
some results on the topological and nontopological solutions in [1, 2, 5, 13, 14].
See also [15] for a survey of recent results on (2.9).

We now turn to the nonrelativistic limit of the Lagrangian density £® de-
veloped in [9]. To begin with, let us investigate the matter part of £

R 2 ——  h¢* 20 112 2\2
‘C‘matte'r‘:h DQQSDQQS—W—M” (|¢, 4 ) .

We first observe that the quadratic term in the potential of LE ... defines the
mass of the scalar ¢ equal to m2c2. This gives the identity

m = hg’o? /kc3.

We will accompany the limit ¢ — oo with fixed m. To this end, we set u = ke
to be fixed. Then

_ K _ [mu
(2.11) K= and o=c¢ g2’
which give a difference from the method in [9]. Indeed, in [9], not only m but
also k is kept fixed and only o varies in the limit ¢ — co. As a consequence, the
matter part of the resulting nonrelativistic Lagrangian contains the constant
¢, which gives rise to difficulties in proving the nonrelativistic limit rigorously
by mathematical arguments. To overcome this difficulty, we will vary both &
and ¢ as (2.11) in the limit ¢ — oo, which is compatible with (2.12) below.
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Then the resulting nonrelativistic Lagrangian involves no terms containing c.
Moreover, the constant y becomes the Chern-Simons coupling constant in the
nonrelativistic model.

Now using (2.11), we can rewrite the matter Lagrangian density as

1 , 2 .
Lhaner = 3100 iz At =137 10,6 — i-k Aj0f? — m?c?|gl?
J=1
thq2 ﬁ2q4
+ |¢|4 P l¢|6
7 plc
Let
1
(2.12) é(t,z) = mexp(—imc%/h)w(t, z), ao=Ao, a;=A4;/c

A simple computation yields that
2 2
— q h2 .q hq
[’fuztter = ﬁRe{W(aﬂﬁ - Zﬁa()/(/}} - % ]Z:; |6]'l/) - lﬁaj¢|2 + 2m”l¢|4 + AC’

where
h2 q ﬁ2q4

Ae= 10— iZagyr — — 96,

2mcz|atw Zha0¢| (2m)3/,L262 W’l

Since A, vanishes in the limit ¢ — oo, we obtain the matter Lagrangian density
of the nonrelativistic Abelian Chern-Simons model:

NR - q B q hg® | 4
Linatter = MRe{19(0 - iyaoy} — P > 1059 - iﬁ“j¢|2 + mhﬂ :
i=1

Furthermore, it is easily verified that the Chern-Simons term turns out to be
K
L8s = 7 FagAy = £ fopa, = LBS
with the notation: fi12 = 0O1as — 8201 and fo; = B:a; — djap for j = 1,2.
Consequently, the Lagrangian density £® becomes in the limit ¢ — oo
NR B ap — q h? - 2 4
= _FaBy : _;q — = dbd A
L 1€ fapay + FRe{iv(0y1 zhaow)} 2md]w i+ 2mu|w| ,

where d; = 0; — ifa; with Greek indices 0,1,2, and j = 1,2. We notice that
the constant p plays the role of the Chern-Simons coupling constant in the
nonrelativistic Abelian Chern-Simons model. The Gauss equation is given by

(2.13) —pfr2 +9’g =0,

from which we obtain the magnetic flux

(2.14) VR = /R fi2 = %/W |9]?.



1002 JONGMIN HAN AND KYUNGWOO SONG

Using (2.13), we obtain the static energy functional
h? hq? h?
ENR=/——d2d2———— 4:/—d iday ).
[ (0 1) = it = [0+ idous
Hence the energy minimum £VF = 0 can be achieved if and only if (¥, a;)
satisfies the self-dual equation

(2.15) dyp + idaty = 0

with the nontopological boundary condition: |¢(z)| — 0 as |z| — co. As in the
relativistic case, we may assume by the Jaffe and Taubes argument [11] that
takes the form

k
1 .
(2.16) ¥(@) = exp (Sw(@)+id_ njarg(@—p;) ),
7=1
where the points p1, . .., py are the distinct zeros of 1 with multiplicities nq,...,

ny, respectively and ny + - - - + n, = N. Then the equation (2.13) is equivalent
to
2¢° £
(2.17) Aw = —hie“’ +4rY nyb,,
n =
with the nontopological boundary condition: w(z) — —o0 as |z| — oc. This is
the well-known Liouville equation with singular sources. If we find a solution
w to (2.17), then we can recover a from (2.15) by the formula

(2.18) ay +iag = —1‘2? dln1p.

Hence (2.15) is equivalent to (2.17) via the relations (2.16) and (2.18)

We now consider the problem of justifying the nonrelativistic limit for the
self-dual equations, that is, proving that the solutions of (2.5) and (2.6} con-
verge to solutions of (2.15) as ¢ — oo. This problem is equivalent to showing
that the solutions of (2.9) converge to solutions of (2.17) as ¢ — oo. If we set
v = u + In2m, then (2.9) becomes

4 k
(219) A’U = me”(e” — 2m02) + 47'(' Z njépj
j=1
q4 2v 2q2 v -
= me —Ee +47Tan5pj.
j=1

Letting ¢ — 0o, we may derive formally that v converges to a solution of (2.17).
However, it is known that there are infinitely many nontopological solutions of
(2.19). See [1, 2, 4, 13] for example. Therefore it is not surprising that there
may be a sequence of solutions to (2.19) which blows up as ¢ — oo instead
of converging to a solution to (2.17). In this point of view, it is important to
find a sequence of solutions to (2.19) converging to a solution to (2.17). This
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means we need a kind of conditions for solutions of (2.19) to make sure the
convergence in the limit ¢ — oo. In this paper, we will find such a condition
when there is only one-vortex point. In fact, if we choose a sequence of radial
solutions to (2.19) with a common shooting constant, then it converges to a
solution to (2.17). In the next section, we state the main theorems of this paper
and in section 4, their proofs are given.

3. Main Theorem

In this section, we assume that there is only one-vortex point. In this case,

under the nontopological boundary condition, the equations (2.17) and (2.19)
are rewritten as

2¢°
(3.1) Aw = —Ee + 47Ny,
w - —00 as |z| — oo,
and
¢ vv 2
(3.2) Av = 3t (€ —2mo*®) + 47Ny,

We observe that the equation (3.1) is the Liouville equation with a singular
source at the origin. We are interested in the radial solutions to (3.1) and
(3.2).

To investigate (3.1) and (3.2) further, we first transform the equation (3.1)
into

1 2¢°
(33) Wrr + —Wy = _iew’ r = ’xl >0
r hy
with the constraint
_ow(r) . .
(3.4) }1_1% e = lgr%)rwr(r) = 2N, rll{go w(r) = —oo.

It follows from the result of [3, 12] that every radial solution to (3.3) and (3.4)
is of the form

8A(N + 1)2p2N 2¢?
(35) ’LU(’!') =1nw —In H,
where )\ is any positive constant.
Similarly, for (3.2) we get

1 4 v 2
(3.6) Uppr + U= g o (¥ = 2ma?) =: g(v)
with the constraints
(3.7 lim ulr) = lim rv,(r) = 2N

r—0 Inr r—0
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and

(3.8) lim v(r) = —ooc.

T—00

It is not difficult to see that v is a solution to (3.6) and (3.7) if and only if there
exists a constant a satisfying

(3.9) v(r)=a+2NIlnr+ /OT % /OS rg(v(7))drds.

See [4] for instance. Let us denote this solution by v(r; a).

In order to classify the solutions to (3.6) and (3.7), let us keep all the con-
stants appearing in g(v) to be fixed and decompose the set of real numbers as
R=AtUA°U A", where

At = {a|v(ro;a) > In(2ma?) 3re > 0},
A% = {a|v(r;a) < In(2mo?) Vr > 0 and v,(r;a) > 0 Vr > 0},
A= = {av(r;a) <In(2mo?) Vr > 0 and v,(ro;a) <0 3rg > 0}.

Then, we have the following.
Theorem 3.1 ([4]). (i) There exists a constant a, € R such that
At = (a,,0), A°={a.}, A =(—00,a.).

(i) For a € A%, let 1 = r1(a) be the first r satisfying v(r;a) = In(2mo?).
Then vp(r;a) >0 for 0 <r < ry.

(iii) If @ = ax, then v(o0) = In(2mo?) and v.(r;a) > 0 for all v > 0.

(iv) v(r;a) is a solution to (3.6)-(3.8) if and only if a € A™. In this case,
v(r;a) < In(2mo?) for all v > 0. Moreover, v has a unique mazimum point o
such that v.(r;a) >0 for r <ry and v.(r;a) <0 for r > rg.

Theorem 3.1 says that for each c there are infinitely many nontopological
solutions to (3.6)-(3.8). Thus, as mentioned at the end of the previous sec-
tion, if we choose an arbitrary sequence of solutions as ¢ — oo, then it may
diverge. See the Remark 4.3 in the next section for an example. Hence, we
need an additional condition to make sure the convergence of solutions in the
nonrelativistic limit. We will achieve the convergence of solutions by keeping
the shooting constant a of solutions when we take the limit ¢ — oo.

We proceed in the proof of nonrelativistic limit for the solutions given by
Theorem 3.1. To this aim, let us vary the constant ¢ and adopt the relation
(2.11). Denote the solutions to (3.6)-(3.8) by v(r,c;a) for a < a, = a.(c). Let
us begin with the following lemma.

Lemma 3.2. a.(c) — o0 as ¢ — 0.

Proof. Suppose that a € A*. Let r1 = ri(a,c) be the first r satisfying
v(r,c;a) = In(2mo?). Then v,(r,c;a) > 0 for 0 < r < r; by Theorem 3.1.
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Let v(ra,c;a) = In(mo?) and v(r3,c;a) = In(mo?) —In2. Then rs < ry < 1.
Since g(v(r,¢;a)) < 0 for 0 < 7 < 7y, it comes from (3.9) that

2

(3.10) a>1mn(mo®) —In2—2Nlnr; = 2Inc+ In % ~2Nlnrs.

Since rv, < 2N for 0 < r < rq, it follows that
"2 2N
In2 = v(ry, ¢;a) — v(rs, c;a) < / X gr=2Nm 2,
T

3 T3

Namely, r3 < 21/2Np; < 1y, Since g(v) is decreasing on In(mo?) —In2 < v <
In(mo?), we have

T2
0 < ravp(re,ca) = T3UT(T3,C;G)+/ rg(v)dr

T3
Q1/2N

< 2N+ g(v(rs,c; a))/ rdr

T3
4.4
ST (1N _1)3,

8x2ct

= 2N -
Thus by the relation (2.11),

(/N —1) 1
N R

which yields together with (3.10) that for any a € A+
(21/N —1) 3m? mip

dme TR
on T Vlgm lors

—2lnrz3 > 2lnc+1n

a>2(N+1)lnc+ Nln

Consequently,

(2N 1) 3m? m2y
on T NIngE tlops,

and the proof is completed. O

ax(c) > 2(N+1)lnc+ Nln

For any fixed a € R, Lemma 3.2 implies that there exists a solution v(r, c; a)

to (3.6)-(3.8) for all sufficiently large c. The following theorem is our first main
result.

Theorem 3.3. Let h,q,u,m > 0 be fired, N be a positive integer, and a € R
be given. Let v(r,c;a) be a solution to (3.6)-(3.8) which is given by the integral

formula (3.9). Then, as ¢ — 0o, v(r, c;a) converges to w(r) which is a solution
0 (3.3) and (3.4). The function w(r) is explicitly given by (3.5) with A = A(a)
defined by

(3.11) Aa) = 4(N +1)%hug2e°.

Moreover, if we set

B(r,c;a) =v(r,c;a) —2NInr, @(r) = w(r) —2Nlnr,
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then for any nonnegative integers k
(3.12) 13 — @llcr(pny < Crr e
as ¢ — 00, where By is the ball of radius R centered at the origin.

Remark 3.4. We observe that A is a decreasing function of a in (3.11), which
implies that Theorem 3.3 completely characterizes the nonrelativistic limit for
radial solutions of a one-vortex case. In other words, for each solution w(r)
to the nomrelativistic equations (3.3) and (3.4), we can find one parameter
family of solutions v(r,c;a) to the relativistic equations (3.6)-(3.8) such that
v(r,c;a) — w(r) as ¢ — oo. Indeed, w(r) is determined by A via (3.5) and
the corresponding v(r, c; a) converging to w(r) can be realized by the common
shooting constant ¢ given by (3.11).

We give the proof of Theorem 3.3 in the next section. Let us keep the
notations in Theorem 3.3. Given a smooth function x : R? — R, let

1 N 1,,, .
z,cia) = 27 expl{=v(r, ¢ a)+1x),
5.13) ¢(z,c;a) N p(5 (2chii X)
Ai(z,¢;a) + iAz(z,c;0) = e dln ¢(z,¢; a),

where z = x1 + 1z and r = |z|. We note that for a solution pair (¢, A1, Az) to
the self-dual equations (2.5) and (2.6), if ¢ has only one zero at the origin of
multiplicity N and |¢| is radially symmetric about the origin, then (¢, A1, As)
is given by the form (3.13). Similarly, let

P(z) = 2N exp(%ﬁ;(r) +ix),

(3.14) . 2hi -

a1(z) + tas(z) = 7 Olny(z)

be a solution to (2.15). Now we are in a position to state the second main
result of this paper.

Theorem 3.5. Under the notations as above, it holds that for each nonnegative
integer k
(3.15)

2

1 Ai(z,ca _
GG o) lorom < Crre

lo(z,¢;a) - mw(i)”ck(BR)’ I

as ¢ — 0o. Moreover, for the magnetic fluzes (2.4) and (2.14) we have

VR _ Arh(N + 1)
q

(3.16) oF - ,

as ¢ — 0.

The proof of this theorem is given in the next section.
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4. Proof of Theorem 3.3 and Theorem 3.5

This section is devoted to the proof of Theorem 3.3. Throughout this section,
let a € R be fixed. By Lemma 3.2, if ¢ is large enough, there exists one
parameter family of solutions v(r, ¢; a) to (3.6)-(3.8). It is easily shown that if
v is a solution to (3.6)-(3.8), then v < In(2mo?) by the maximum principle.

Lemma 4.1. Let a(c) be the mazimum value of v(r,c;a). Then there exists a
constant € > 0 independent of ¢ such that

alc) < In(2mo?) —¢
as ¢ — oo.

Proof. Assume the contrary. Then there would be a sequence ¢, — oc such
that In(2mo2) — o, — 0, where 0, = co/mu/hg? and o, = afc,). Let
vn(r) = v(r, cnj @), an = vy (t,), and r,, > 0 such that v, (r,) = In(mo?2). Since
an > In(mo?), we have 1, < t,,. Since g(v,) < 0 for 0 < r < t,, it comes from
(3.9) that

(4.1) Tn > (mo2)Y?N exp(—a/2N).
On the other hand, integrating (r(v,),)r = rg(vs) on (0,t,), we get

tn tn 2
2N = —/ rgvndTZ—/ " g(vp ) (vp)pdr
[ roteair 2 = [ i) on)
,’,.2 Qn
> _.n
2 5y g(v)dv,

In(me2)

where the last inequality follows from the fact that r(vy,), < 2N for 0 < r < t,,.
Hence,

3
2 2 0n _ 2 20 2 4
AN? > m2N2 x (2ma o — Sm?a).
Here, £, = p/c,. Since ln(2maﬁ) — oy — 0, if ¢, is large enough, then
2 q*rs L o4 1 5929
4N* > mzmgjc‘}b 13O = g Gt

m N)l/N.czsz/N oo

L o
> Tl exp(— a/N)( e
which is a contradiction. Here, the last inequality follows from (4.1). O

In the remaining part of this section, let 79 = 74(c) be a unique maximum
point of v(r, ¢; a) and a = a(c) be the maximum value of v(r, ¢;a). Then

v(ro,c;a) = a < In(2ma?), wq(ro,ca) = 0.
Lemma 4.2. As ¢ — oo,

(4.2) a—Cre” N+ < g(c) <

a
Cy,
Ni1 @2



1008 JONGMIN HAN AND KYUNGWOO SONG

and

(4.3) 2 ~

where C;’s are independent of a and c.

% <2larg(e) < —a+ G,

Proof. Since g(v) < 0, it follows from (3.9) that
(4.4) a<a+2Nlnrg.
To estimate Inry, let us choose a constant § > 0 such that (1 —§)2Y —e~¢ > 0.
Integrating (3.6), we have
70 1 S
v((1 = 9d)ro,c;a) =a+2NIn(l - 6) — / - / rg(v) drds,
1 6)’!‘0

which implies that
a+2NIn(1-9) <v(r,ga) <a, Vre[(l—¥b)ry,rol.
This leads us by Lemma 4.1 that

T0
2N = ——/ rg(v)dr
0

o q4
> / oy (2m0_26a+2N In(1-6) _ e2a),,, dr
(1-8)rg MR7C

2¢* Q-0- 5)2)7"3 2N —¢
> e o v TJ0 (1~ —e79).
> e - (=8 —e™)
Thus
(4.5) 2lnrg < —a+C,

where C is independent of ¢. This inequality together with (4.4) shows the
second inequality of (4.2).
On the other hand, from(3.9),

2¢*mo?
a > v(l,c;a)Za—/ / — 5t Yrdrds
2 1
> a—2ie"‘/ -1—/ TdesZa—Ce_“/(NH),
o 0o S$Jo

where the last inequality follows from the second inequality of (4.2). This
establishes the first inequality of (4.2). Finally, (4.3) comes from (4.4) and
(4.5). O

Remark 4.3. Given a sequence ¢, — oo, if we choose a sequence a,, — —o0,
then afc,) — —oo. This means the solutions v(r,cn,;a,) — —oo, that is,
the sequence v(r, ¢n, ; arn) diverges. As pointed out in the previous section, an
arbitrary sequence of solutions may diverge when ¢ — oc.
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Proof of Theorem 8.3. Let ¢, be an arbitrary sequence such that ¢, — oo.

Set on, = cpv/mp/hg?, kn = p/cn, va(r) = v(r,cn;a), a, = supva(r), and
tn = ro(cn). Hence o, = vn(t,). We note that
4 4 2
2c 2 o q 2a 2¢°
n 2 ny — n _t n
(%™ + 2more*) m%ﬂcﬁe + hue )

q
m2k2ct

lg(vn)| <

which means by Lemma 4.2 that ¢ is uniformly bounded for all r as ¢, — oo.
Therefore for any given R > 0, if 0 < r < R, then

i <l +] [ 3 [ rotontrards| <

for some constant Cr dependent only on R. Thus we have supjg g) |0n ()| < Cr.
Since

r(n)r = /0 " sg(un(s))ds,

we obtain supjg gy [7(9n)-| < Cr. As a consequence, we see that supg, |V9| <
Cr and thus [|9,|cs(pr) < Crpg for 0 < 8 < 1. Since

|ABnllcs(Br) = 9(vn)llcs(Br) < Crys:
we conclude that

onllc28(Br) < CR,g-

This implies that there exist a subsequence, denoted by the same notation, vp,

and a function @ € C*#(Bg) such that #, — @ € CY#(Bg) for any 3 € (0,1)

as ¢, — oo. It follows from the bootstrap argument that @, — @ in C*(Bg)

for all nonnegative integers k. Moreover, we may assume by Lemma 4.2 that
ayn — a4 and t, — t,.

Now let us determine the function . Since
4 2 2
g(vn) = 2‘1 — 72N 200 _ ?_q_T,QNef;n N __2_‘1_7,2Neu'1
m2u®c? By I m

w(r) = @(r) + 2N Inr satisfies

b

id 1 8 _2q2
=a+2N1 = —)e¥( drd >0,
w(r) =a+ nr+/0 5/0 7'( T )e rds, T

which yields (3.3) with
O = w(ty) = SUP Wa.
R2

Next, we verify that w satisfies (3.4). Integrating (3.6) on (0,t,), we get

Taking the limit, we obtain

t* 2
2N :/ 2i7"6“’ dr,
o hu
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which implies lim, 7w, = 2N. Since w, < 0 for r > r,, there exists

=i = 1i > —00.
v rliltf* ’U)(’I‘) rll{lgo w(r) ==X

hm/ /TdeS—
00 t*

Hence w(oo) = —oo and (3.4) is proved. As a consequence, w is a radial
solution to (3.3) and (3.4). Therefore, there exists A > 0 such that w is of the
form (3.5). Since

If v > —c0, we arrive at a contradiction'

oo > lim |w(r)| > —|o. +

W(0) = lim 3,(0) = a,

n—00
we arrive at (3.11).

On the other hand, the uniqueness of w implies that the convergence holds
true for the whole sequence ¢,. Since {c,} was an arbitrary sequence, we
conclude that (r, c) — w(r) as ¢ — oo in C*¥(Bg) for any R > 0.

It remains to show (3.12). For simplicity, we write v(r) = v(r, ¢;a), a = a(c),
and so on. We first consider the case k = 0. Let R > 0. For 0 <r < R,

4
- - q 2a 72N+
- <
[o(r) —w(r)] < m2u202 /05/ drds

C.c? +Csup|17—u~;|/ —/ N*+ldrds.
[0,R] o $Jo

IA

Thus for sufficiently small R > 0, we have supjq g |6 — | < Cg - c™2. Let
Ry =sup{R > 0: (3.12) holds for k = 0}.
Suppose that Ry < oo. For R > Ry, if Ry < r < R, then
[o(r) —@(r)] < [8(Ro) — w(Ro)| +|(8(r) — 3(Ro)) — (@(r) — B(Ro))]
< C-c?24C sup |v—w|/ / 2N+ grds.
[R07R] RO
< C-c 24+ C(R™N*Z - R2N*2) sup |9 — ).
[R0$R]
Thus if R is close enough to Ry, then supjg, g | — @] < C - ¢™2, which is a
contradiction. Hence Ry = oo and (3.12) is achieved for k = 0.
The general cases are given by induction. We note that
AT — q* oN 25 20 N, BY . A5 25
(0 —w) = m2;¢2c2r e”’ — E—r (e’ —e¥) =: G(d,w).
Suppose that [|04(7 — @)||co(pp) < Ck,r ™2 for 0 <1 < k. Then, it is obvious
that

HBkG(f},’J})HCO(BR) < Ck,r c 2,

Since Ad*(3 — ) = 8*G(®, W), the standard elliptic regularity implies that

051 (5 — )|l co(Br) < Chr 72
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This completes the proof of Theorem 3.3. O

Proof of Theorem 3.5. The asymptotic behavior (3.15) is an immediate conse-
quence of Theorem 3.3. For the proof of (3.16), we note that by (3.5)

lim rw, = -2N —4 < —6

00

and

SR _ g/ gy _ ARV + 1)
B JRr2 q
It is proved in [4, 13] that

lim rv,(r,c,;a) < —2N — 4.

r—00
Let r1 = r1(c) and r3 be numbers such that r1v,(r, c;a) = —3 and raw,.(r2) =
—4. Since

rowr(r2) = Hm rour(re,c,;a),

cC—00

we get Toup(re, ¢,;a) < —3 for all large c. Since rv, is decreasing, we obtain
r1 < 72. This means that r1(c) is bounded in the limit ¢ — co.

Let us write v(r) = v(r, ¢, ;a) for simplicity. Now for r1 < r < 0o, we have
v, £ —3 and hence for r > r;

3
) < vlr) (7”_1>3 <er(DY"
r r
This implies that as ¢ — oo,
oo oo
re’dr < rle®* + rde®r=2dr = 2r?e® < C.
A 1 1 1
1

Thus, it follows from the Lebesgue Convergence Theorem that

oo >
/ re’dr — / re“dr,
0 0
as ¢ — o0o. Furthermore,

xX0 x>
/ re2ldr < eo‘/ redr < C.
0 0

In the sequel, it follows from (2.6) that

2 o0 h 3 o0 2 o0
L | re’dr — —7; q2 5 / re®Vdr — Lq/ reVdr = VR,
B Jo map=cs Jo B Jo

which finishes the proof. g
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