• Title/Summary/Keyword: Chen inequality

Search Result 40, Processing Time 0.019 seconds

GEOMETRIC INEQUALITIES FOR SUBMANIFOLDS IN SASAKIAN SPACE FORMS

  • Presura, Ileana
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.4
    • /
    • pp.1095-1103
    • /
    • 2016
  • B. Y. Chen introduced a series of curvature invariants, known as Chen invariants, and proved sharp estimates for these intrinsic invariants in terms of the main extrinsic invariant, the squared mean curvature, for submanifolds in Riemannian space forms. Special classes of submanifolds in Sasakian manifolds play an important role in contact geometry. F. Defever, I. Mihai and L. Verstraelen [8] established Chen first inequality for C-totally real submanifolds in Sasakian space forms. Also, the differential geometry of slant submanifolds has shown an increasing development since B. Y. Chen defined slant submanifolds in complex manifolds as a generalization of both holomorphic and totally real submanifolds. The slant submanifolds of an almost contact metric manifolds were defined and studied by A. Lotta, J. L. Cabrerizo et al. A Chen first inequality for slant submanifolds in Sasakian space forms was established by A. Carriazo [4]. In this article, we improve this Chen first inequality for special contact slant submanifolds in Sasakian space forms.

SHARP INEQUALITIES INVOLVING THE CHEN-RICCI INEQUALITY FOR SLANT RIEMANNIAN SUBMERSIONS

  • Mehmet Akif Akyol;Nergiz (Onen) Poyraz
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.5
    • /
    • pp.1155-1179
    • /
    • 2023
  • Main objective of the present paper is to establish Chen inequalities for slant Riemannian submersions in contact geometry. In this manner, we give some examples for slant Riemannian submersions and also investigate some curvature relations between the total space, the base space and fibers. Moreover, we establish Chen-Ricci inequalities on the vertical and the horizontal distributions for slant Riemannian submersions from Sasakian space forms.

GEOMETRIC INEQUALITIES FOR WARPED PRODUCTS SUBMANIFOLDS IN GENERALIZED COMPLEX SPACE FORMS

  • Mohd Aquib;Mohd Aslam;Michel Nguiffo Boyom;Mohammad Hasan Shahid
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.179-193
    • /
    • 2023
  • In this article, we derived Chen's inequality for warped product bi-slant submanifolds in generalized complex space forms using semisymmetric metric connections and discuss the equality case of the inequality. Further, we discuss non-existence of such minimal immersion. We also provide various applications of the obtained inequalities.

CHEN INVARIANTS AND STATISTICAL SUBMANIFOLDS

  • Furuhata, Hitoshi;Hasegawa, Izumi;Satoh, Naoto
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.3
    • /
    • pp.851-864
    • /
    • 2022
  • We define a kind of sectional curvature and 𝛿-invariants for statistical manifolds. For statistical submanifolds the sum of the squared mean curvature and the squared dual mean curvature is bounded below by using the 𝛿-invariant. This inequality can be considered as a generalization of the so-called Chen inequality for Riemannian submanifolds.

ON HERMITE-HADAMARD-TYPE INEQUALITIES FOR DIFFERENTIABLE QUASI-CONVEX FUNCTIONS ON THE CO-ORDINATES

  • Chen, Feixiang
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.3_4
    • /
    • pp.303-314
    • /
    • 2014
  • In this paper, a new lemma is established and several new inequalities for differentiable co-ordinated quasi-convex functions in two variables which are related to the left-hand side of Hermite-Hadamard type inequality for co-ordinated quasi-convex functions in two variables are obtained.

On vector Quasivariational-like inequality

  • Lee, Gue-Myung;Kim, Do-Sang;Lee, Byung-Soo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.45-55
    • /
    • 1996
  • Recently, Giannessi [1] introduced a vector variational inequalityy for vector-valued functions in an Euclidean space. Since then, Chen et al. [2-6], Lee et al. [7], and Yang [8] have intensively studied vector variational inequalities for vector-valued functions in abstract spaces.

  • PDF

THE GENERALIZATION OF STYAN MATRIX INEQUALITY ON HERMITIAN MATRICES

  • Zhongpeng, Yang;Xiaoxia, Feng;Meixiang, Chen
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.3_4
    • /
    • pp.673-683
    • /
    • 2009
  • We point out: to make Hermtian matrices A and B satisfy Styan matrix inequality, the condition "positive definite property" demanded in the present literatures is not necessary. Furthermore, on the premise of abandoning positive definite property, we derive Styan matrix inequality of Hadamard product for inverse Hermitian matrices and the sufficient and necessary conditions that the equation holds in our paper.

  • PDF

FOUR LOGARITHMICALLY COMPLETELY MONOTONIC FUNCTIONS INVOLVING GAMMA FUNCTION

  • Qi, Feng;Niu, Da-Wei;Cao, Jian;Chen, Shou-Xin
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.2
    • /
    • pp.559-573
    • /
    • 2008
  • In this paper, two classes of functions, involving a parameter and the classical Euler gamma function, and two functions, involving the classical Euler gamma function, are verified to be logarithmically completely monotonic in $(-\frac{1}{2},\infty)$ or $(0,\infty)$; some inequalities involving the classical Euler gamma function are deduced and compared with those originating from certain problems of traffic flow, due to J. Wendel and A. Laforgia, and relating to the well known Stirling's formula.

THE BONNESEN-TYPE INEQUALITIES IN A PLANE OF CONSTANT CURVATURE

  • Zhou, Jiazu;Chen, Fangwei
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.6
    • /
    • pp.1363-1372
    • /
    • 2007
  • We investigate the containment measure of one domain to contain in another domain in a plane $X^{\kappa}$ of constant curvature. We obtain some Bonnesen-type inequalities involving the area, length, radius of the inscribed and the circumscribed disc of a domain D in $X^{\kappa}$.

On vector variational inequality

  • Lee, Gue-Myung;Kim, Do-Sang;Lee, Byung-Soo;Cho, Sung-Jin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.553-564
    • /
    • 1996
  • Since Giannessi [5] introduced the vector variational inequality in a finite dimensional Euclidean space with further application, Chang et al. [17], Chen et al. [1-4] and Lee et al. [10-16] have considered several kinds of vector variational inequalities in abstract spaces and have obtained existence theorems for their inequalities.

  • PDF