CHEN INVARIANTS AND STATISTICAL SUBMANIFOLDS

Hitoshi Furuhata, Izumi Hasegawa, and Naoto Satoh

Abstract

We define a kind of sectional curvature and δ-invariants for statistical manifolds. For statistical submanifolds the sum of the squared mean curvature and the squared dual mean curvature is bounded below by using the δ-invariant. This inequality can be considered as a generalization of the so-called Chen inequality for Riemannian submanifolds.

1. Introduction

For a Riemannian manifold, B.-Y. Chen introduced functions $\delta_{\left(m_{1}, \ldots, m_{k}\right)}$, new kinds of curvatures, which are defined in terms of sectional curvature and its generalizations. They are now called Chen's delta-invariants. He established inequalities for Riemannian submanifolds which involve his delta-invariant and the squared mean curvature. His work inspires many geometers and derives inequalities for various settings. A general expression can be found in [2] for example (see also Corollary 3.7).

The submanifold theory in statistical manifolds is a developing research field. A statistical structure on a manifold is a pair of a Riemannian metric and an affine connection satisfying certain conditions. By definition, a pair of a Riemannian metric and its Levi-Civita connection is a basic example. Accordingly, it is a natural problem to build corresponding inequalities for statistical submanifolds. In fact, many geometers recently give various inequalities for statistical submanifolds (for example, see $[1,3,6,7,9]$ and references therein). In particular, A. Mihai and I. Mihai [7] obtained an inequality for statistical submanifolds corresponding to the one in terms of the $\delta_{(2,2)}$-invariant, though they did not define the delta-invariant for a statistical manifold.

In this paper, we reformulate and generalize their inequality by defining delta-invariants for a statistical manifold. To define the delta-invariants, we use a new notion of sectional curvature for a statistical manifold, which is different from the ones defined from the so-called the statistical curvature tensor field S or the so-called the K-curvature tensor field $[K, K]$ (see Section 2 and $[4,8]$

[^0]for sectional curvatures of statistical manifolds). We can define another deltainvariant by using each of those sectional curvatures for a statistical manifold. However, our delta-invariant δ^{U} is suitable for obtaining the relation between the sum of the squared mean curvature and the squared dual mean curvature. In this paper, we have:
Theorem 1.1. Let \widetilde{M} be an $(m+p)$-dimensional statistical manifold of constant U sectional curvature $\widetilde{\kappa}$. Let (M, ∇, g) be an m-dimensional statistical submanifold in \widetilde{M} with the mean curvature vector field H and the dual mean curvature vector field H^{*}. Then the following inequality holds at each point of M :
$$
\|H\|^{2}+\left\|H^{*}\right\|^{2} \geq 2 c\left(m_{1}, \ldots, m_{k}\right)^{-1}\left\{\delta_{\left(m_{1}, \ldots, m_{k}\right)}^{U}-b\left(m_{1}, \ldots, m_{k}\right) \widetilde{\kappa}\right\}
$$
where $\delta_{\left(m_{1}, \ldots, m_{k}\right)}^{U}$ is the delta-invariant of (∇, g) for U of type $\left(m_{1}, \ldots, m_{k}\right)$, and $b\left(m_{1}, \ldots, m_{k}\right), c\left(m_{1}, \ldots, m_{k}\right)$ are positive constants defined in Definition 3.2.

The precise statement will be given as Proposition 3.4 and Theorem 3.6, which will be presented in the style same to [2]. The statistical submanifolds characterized by the equality will be stated there. The definitions concerning U are presented in Section 2. For example, a Hessian manifold of constant Hessian curvature is of constant U sectional curvature. If \widetilde{M} is such a manifold and if $k=2$ and $m_{1}=m_{2}=2$, then the theorem is reduced to the inequality in [7]. If \widetilde{M} is a Riemannian manifold, that is, if the considering affine connection coincides with the Levi-Civita connection, then the theorem is reduced to the inequality in [2]. A key of the proof is the algebraic identity (3.6), which seems easier to understand than the proof of the known Riemannian version. As an application, we have the non-existence of doubly minimal statistical submanifolds in statistical manifolds of non-positive U sectional curvature (Corollary 4.4).

2. Curvatures for statistical structures

Throughout this paper, M denotes a smooth manifold of dimension $m \geq 2$, and all the objects are assumed to be smooth. $\Gamma(E)$ denotes the set of sections of a vector bundle $E \rightarrow M$. For example, $\Gamma\left(T M^{(p, q)}\right)$ means the set of all the tensor fields on M of type (p, q).

Let ∇ be an affine connection on M, and $g \in \Gamma\left(T M^{(0,2)}\right)$ a Riemannian metric. We denote the Levi-Civita connection of g by ∇^{g}.

We will start with the review of statistical structures.
Definition 2.1. A pair (∇, g) is called a statistical structure on M if ∇ is of torsion free, and the Codazzi equation

$$
\left(\nabla_{X} g\right)(Y, Z)=\left(\nabla_{Y} g\right)(X, Z)
$$

holds for any $X, Y, Z \in \Gamma(T M)$.

Remark 2.2. For an affine connection ∇ on a Riemannian manifold (M, g), define ∇^{*} by the formula

$$
\begin{equation*}
X g(Y, Z)=g\left(\nabla_{X} Y, Z\right)+g\left(Y, \nabla_{X}^{*} Z\right) \tag{2.1}
\end{equation*}
$$

for any $X, Y, Z \in \Gamma(T M)$. Then ∇^{*} is an affine connection on M which is called the dual connection of ∇ with respect to g. Moreover, if (∇, g) is a statistical structure, then $\left(\nabla^{*}, g\right)$ is also a statistical structure and $\nabla^{g}=\frac{1}{2}\left(\nabla+\nabla^{*}\right)$ as well.

Remark 2.3. For a statistical structure (∇, g), we set

$$
\begin{equation*}
K_{X} Y=\nabla_{X} Y-\nabla_{X}^{g} Y \tag{2.2}
\end{equation*}
$$

for any $X, Y \in \Gamma(T M)$. Then $K \in \Gamma\left(T M^{(1,2)}\right)$ satisfies

$$
\begin{equation*}
K_{X} Y=K_{Y} X, \quad g\left(K_{X} Y, Z\right)=g\left(Y, K_{X} Z\right) \tag{2.3}
\end{equation*}
$$

Conversely, for a Riemannian metric g if a given $K \in \Gamma\left(T M^{(1,2)}\right)$ satisfies (2.3), then a pair $\left(\nabla=\nabla^{g}+K, g\right)$ becomes a statistical structure.

Besides, we have $K=\nabla^{g}-\nabla^{*}=\frac{1}{2}\left(\nabla-\nabla^{*}\right)$. We often denote $K_{X} Y$ by $K(X, Y)$ as well.

Definition 2.4. Let (∇, g) be a statistical structure on M. We denote the curvature tensor field of ∇ by R^{∇} or R for short, and denote $R^{\nabla^{*}}$ by $R^{*}, R^{\nabla^{g}}$ by R^{g} in the similar fashion.
(1) We define

$$
S(X, Y) Z=\frac{1}{2}\left\{R(X, Y) Z+R^{*}(X, Y) Z\right\}
$$

for $X, Y, Z \in \Gamma(T M)$, and call $S \in \Gamma\left(T M^{(1,3)}\right)$ the statistical curvature tensor field of (∇, g).
(2) Let $\left\{e_{1}, \ldots, e_{m}\right\}$ be an orthonormal basis of $T_{x} M$. For a 2-dimensional subspace $e_{i} \wedge e_{j}, 1 \leq i<j \leq m$, spanned by $e_{i}, e_{j} \in T_{x} M$,

$$
\mathcal{K}^{S}\left(e_{i} \wedge e_{j}\right)=g\left(S\left(e_{i}, e_{j}\right) e_{j}, e_{i}\right)
$$

is called the statistical sectional curvature of (∇, g) for a plane $e_{i} \wedge e_{j}$, which is denoted by $\mathcal{K}\left(e_{i} \wedge e_{j}\right)$ for short. We remark that $\mathcal{K}(\Pi)$ for a 2 -dimensional subspace Π of $T_{x} M$ is well defined (see [4]). We denote by \mathcal{K}^{g} the sectional curvature of g, which is given by using R^{g} instead of S.
(3) We define a global scalar field

$$
\rho=\sum_{1 \leq i, j \leq m} g\left(S\left(e_{i}, e_{j}\right) e_{j}, e_{i}\right)=2 \sum_{1 \leq i<j \leq m} \mathcal{K}\left(e_{i} \wedge e_{j}\right),
$$

and call ρ the statistical scalar curvature of (∇, g). The scalar curvature of g is written by $\rho^{g}=2 \sum_{1 \leq i<j \leq m} \mathcal{K}^{g}\left(e_{i} \wedge e_{j}\right)$.
Remark 2.5. For a statistical structure (∇, g), the following holds:

$$
S(X, Y) Z=R^{g}(X, Y) Z+\left[K_{X}, K_{Y}\right] Z
$$

for $X, Y, Z \in \Gamma(T M)$. If $K=0$, that is, if ∇ is the Levi-Civita connection of g, then we have $S=R^{g}$, and so $\mathcal{K}=\mathcal{K}^{g}, \rho=\rho^{g}$.

Definition 2.6. Let (∇, g) be a statistical structure on M. We set $U \in$ $\Gamma\left(T M^{(1,3)}\right)$ as

$$
\begin{aligned}
U(X, Y) Z & =R^{g}(X, Y) Z-\left[K_{X}, K_{Y}\right] Z \\
& =2 R^{g}(X, Y) Z-S(X, Y) Z
\end{aligned}
$$

for $X, Y, Z \in \Gamma(T M)$. As \mathcal{K}^{S} is well defined, we can define the U sectional curvature $\mathcal{K}^{U}\left(e_{i} \wedge e_{j}\right)$ of (∇, g) for a plane $e_{i} \wedge e_{j}$ of $T_{x} M$:

$$
\mathcal{K}^{U}\left(e_{i} \wedge e_{j}\right)=g\left(U\left(e_{i}, e_{j}\right) e_{j}, e_{i}\right)
$$

and the U scalar curvature:

$$
\begin{aligned}
\rho^{U} & =2 \sum_{1 \leq i<j \leq m} \mathcal{K}^{U}\left(e_{i} \wedge e_{j}\right) \\
& =2 \rho^{g}-\rho
\end{aligned}
$$

Remark that if $K=0$, then $U=R^{g}$, and so $\mathcal{K}^{U}=\mathcal{K}^{g}, \rho^{U}=\rho^{g}$. We also remark that an m-dimensional Hessian manifold (M, ∇, g) of constant Hessian curvature κ is of constant U sectional curvature $-\kappa / 2$, particularly, $\rho^{U}=-\kappa m(m-1) / 4$.

For integers $m \geq 3, k \geq 1$, let us denote by $\mathcal{S}(m, k)$ the set consisting of unordered k-tuples (m_{1}, \ldots, m_{k}) of integers which satisfies

$$
\begin{equation*}
2 \leq m_{q}<m \text { for } q=1, \ldots, k, \quad m \geq l_{k} \tag{2.4}
\end{equation*}
$$

where $l_{k}=m_{1}+\cdots+m_{k}$.
Definition 2.7. Let (M, ∇, g) be a statistical manifold of dimension $m \geq 3$.
(1) Let L be a subspace of $T_{x} M$ of dimension $l \geq 2$ and $\left\{e_{1}, \ldots, e_{l}\right\}$ an orthonormal basis of L. We denote

$$
\rho^{U}(L)=2 \sum_{1 \leq i<j \leq l} \mathcal{K}^{U}\left(e_{i} \wedge e_{j}\right)
$$

Remark that $\rho^{U}\left(T_{x} M\right)=\rho^{U}(x)$.
(2) For $\left(m_{1}, \ldots, m_{k}\right) \in \mathcal{S}(m, k)$, we define a function $\delta_{\left(m_{1}, \ldots, m_{k}\right)}^{U}: M \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
\delta_{\left(m_{1}, \ldots, m_{k}\right)}^{U}(x)=\frac{1}{2}\left[\rho^{U}(x)-\inf \left\{\sum_{q=1}^{k} \rho^{U}\left(L_{q}\right) \mid L_{1}, \ldots, L_{k}\right\}\right] \tag{2.5}
\end{equation*}
$$

where L_{1}, \ldots, L_{k} run over all k mutually orthogonal subspaces of $T_{x} M$ with $\operatorname{dim} L_{q}=m_{q}, q=1, \ldots, k$. We call $\delta_{\left(m_{1}, \ldots, m_{k}\right)}^{U}$ the delta-invariant of (∇, g) for U of type $\left(m_{1}, \ldots, m_{k}\right)$. Furthermore, we write $\delta_{(\emptyset)}^{U}(x)=\rho^{U}(x) / 2$ for convenience sake.

Remark 2.8. For $\left(M, \nabla^{g}, g\right)$, our $\delta_{\left(m_{1}, \ldots, m_{k}\right)}^{U}$ coincides with $\delta_{\left(m_{1}, \ldots, m_{k}\right)}$ defined by B.-Y. Chen for a Riemannian manifold (M, g). We put $1 / 2$ on the right hand side of (2.5) because his scalar curvature is a half of ours.

3. Chen inequalities

We give an algebraic preliminary, which is a key lemma to prove our theorems.

Lemma 3.1. For $\left(m_{1}, \ldots, m_{k}\right) \in \mathcal{S}(m, k)$, set $l_{0}=0$ and $l_{q}=m_{1}+\cdots+m_{q}$ for $q=1, \ldots, k$. Suppose that $m \geq l_{k}+1$. We have the following inequalities (3.1) and (3.3) for arbitrary $a_{1}, \ldots, a_{m} \in \mathbb{R}$:

$$
\begin{equation*}
\left(m-l_{k}-1\right)\left(\sum_{i=l_{k}+1}^{m} a_{i}\right)^{2} \geq 2\left(m-l_{k}\right) \sum_{l_{k}+1 \leq i<j \leq m} a_{i} a_{j} \tag{3.1}
\end{equation*}
$$

The equality holds if and only if

$$
\begin{equation*}
a_{l_{k}+1}=\cdots=a_{m} . \tag{3.2}
\end{equation*}
$$

It also holds for $m \geq 2$ and $k=0$.

$$
\begin{align*}
& \left(m+k-l_{k}-1\right)\left(\sum_{i=1}^{m} a_{i}\right)^{2} \tag{3.3}\\
\geq & 2\left(m+k-l_{k}\right)\left(\sum_{1 \leq i<j \leq m} a_{i} a_{j}-\sum_{q=1}^{k} \sum_{l_{q-1}+1 \leq i<j \leq l_{q}} a_{i} a_{j}\right) .
\end{align*}
$$

The equality holds if and only if

$$
\begin{equation*}
A_{1}=\cdots=A_{k}=a_{l_{k}+1}=\cdots=a_{m} \tag{3.4}
\end{equation*}
$$

where $A_{q}=a_{l_{q-1}+1}+\cdots+a_{l_{q}}$.
Proof. These are obtained directly from the following two identities:

$$
\begin{align*}
& \sum_{l_{k}+1 \leq i<j \leq m}\left(a_{i}-a_{j}\right)^{2} \tag{3.5}\\
= & \left(m-l_{k}-1\right)\left(\sum_{i=l_{k}+1}^{m} a_{i}\right)^{2}-2\left(m-l_{k}\right) \sum_{l_{k}+1 \leq i<j \leq m} a_{i} a_{j},
\end{align*}
$$

and

$$
\begin{align*}
& \sum_{l_{k}+1 \leq i<j \leq m}\left(a_{i}-a_{j}\right)^{2}+\sum_{q=1}^{k} \sum_{i=l_{k}+1}^{m}\left(A_{q}-a_{i}\right)^{2}+\sum_{1 \leq q<r \leq k}\left(A_{q}-A_{r}\right)^{2} \tag{3.6}\\
= & \left(m+k-l_{k}-1\right)\left(\sum_{i=1}^{m} a_{i}\right)^{2}
\end{align*}
$$

$$
-2\left(m+k-l_{k}\right)\left(\sum_{1 \leq i<j \leq m} a_{i} a_{j}-\sum_{q=1}^{k} \sum_{l_{q-1}+1 \leq i<j \leq l_{q}} a_{i} a_{j}\right) .
$$

The proof of (3.5) is as follows: We calculate

$$
\begin{aligned}
\sum_{l_{k}+1 \leq i<j \leq m}\left(a_{i}-a_{j}\right)^{2} & =\frac{1}{2} \sum_{l_{k}+1 \leq i, j \leq m}\left(a_{i}-a_{j}\right)^{2} \\
& =\left(m-l_{k}\right) \sum_{i=l_{k}+1}^{m} a_{i}^{2}-\left(\sum_{i=l_{k}+1}^{m} a_{i}\right)^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{l_{k}+1 \leq i<j \leq m}\left(a_{i}-a_{j}\right)^{2} \\
= & \frac{1}{2}\left(\sum_{l_{k}+1 \leq i, j \leq m}-\sum_{l_{k}+1 \leq i=j \leq m}\right)\left(a_{i}^{2}+a_{j}^{2}\right)-2 \sum_{l_{k}+1 \leq i<j \leq m} a_{i} a_{j} \\
= & \left(m-l_{k}-1\right) \sum_{i=l_{k}+1}^{m} a_{i}^{2}-2 \sum_{l_{k}+1 \leq i<j \leq m} a_{i} a_{j} .
\end{aligned}
$$

Deleting the term $\sum a_{i}{ }^{2}$ from these two identities implies (3.5).
The proof of (3.6) is as follows: We have

$$
\begin{aligned}
& \sum_{1 \leq q<r \leq k} A_{q} A_{r}+\sum_{q=1}^{k} A_{q} \sum_{i=l_{k}+1}^{m} a_{i}+\sum_{l_{k}+1 \leq i<j \leq m} a_{i} a_{j} \\
= & \sum_{1 \leq i<j \leq m} a_{i} a_{j}-\sum_{q=1}^{k} \sum_{l_{q-1}+1 \leq i<j \leq l_{q}} a_{i} a_{j},
\end{aligned}
$$

which implies that
[the left-hand side of (3.6)]

$$
\begin{aligned}
= & \left\{\left(m-l_{k}-1\right) \sum_{i=l_{k}+1}^{m} a_{i}{ }^{2}-2 \sum_{l_{k}+1 \leq i<j \leq m} a_{i} a_{j}\right\} \\
& +\left\{\left(m-l_{k}\right) \sum_{q=1}^{k} A_{q}^{2}+k \sum_{i=l_{k}+1}^{m} a_{i}{ }^{2}-2 \sum_{q=1}^{k} A_{q} \sum_{i=l_{k}+1}^{m} a_{i}\right\} \\
& +\left\{(k-1) \sum_{q=1}^{k} A_{q}^{2}-2 \sum_{1 \leq q<r \leq k} A_{q} A_{r}\right\} \\
= & \left(m+k-l_{k}-1\right)\left(\sum_{q=1}^{k} A_{q}^{2}+\sum_{i=l_{k}+1}^{m} a_{i}^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& -2\left(\sum_{1 \leq q<r \leq k} A_{q} A_{r}+\sum_{q=1}^{k} A_{q} \sum_{i=l_{k}+1}^{m} a_{i}+\sum_{l_{k}+1 \leq i<j \leq m} a_{i} a_{j}\right) \\
= & \left(m+k-l_{k}-1\right)\left\{\left(\sum_{q=1}^{k} A_{q}\right)^{2}+\left(\sum_{i=l_{k}+1}^{m} a_{i}\right)^{2}\right\} \\
& -2\left(m+k-l_{k}\right)\left(\sum_{1 \leq q<r \leq k} A_{q} A_{r}+\sum_{l_{k}+1 \leq i<j \leq m} a_{i} a_{j}\right)-2 \sum_{q=1}^{k} A_{q} \sum_{i=l_{k}+1}^{m} a_{i} \\
= & \left(m+k-l_{k}-1\right)\left(\sum_{q=1}^{k} A_{q}+\sum_{i=l_{k}+1}^{m} a_{i}\right)^{2} \\
& -2\left(m+k-l_{k}\right)\left(\sum_{1 \leq q<r \leq k} A_{q} A_{r}+\sum_{q=1}^{k} A_{q} \sum_{i=l_{k}+1}^{m} a_{i}+\sum_{l_{k}+1 \leq i<j \leq m} a_{i} a_{j}\right)
\end{aligned}
$$

$=[$ the right-hand side of (3.6)].

Following [2], we adopt the symbols below for later use.
Definition 3.2. For $\left(m_{1}, \ldots, m_{k}\right) \in \mathcal{S}(m, k)$, we set the positive constants as follow:

$$
\begin{align*}
b\left(m_{1}, \ldots, m_{k}\right) & =\frac{1}{2} m(m-1)-\frac{1}{2} \sum_{q=1}^{k} m_{q}\left(m_{q}-1\right) \tag{3.7}\\
c\left(m_{1}, \ldots, m_{k}\right) & =\frac{m^{2}}{2} \frac{m+k-\sum_{q=1}^{k} m_{q}-1}{m+k-\sum_{q=1}^{k} m_{q}} \tag{3.8}\\
& =\frac{m^{2}}{2} \frac{m+k-l_{k}-1}{m+k-l_{k}}
\end{align*}
$$

and moreover,

$$
\begin{equation*}
b(\emptyset)=c(\emptyset)=\frac{1}{2} m(m-1) . \tag{3.9}
\end{equation*}
$$

Let $(\widetilde{M}, \widetilde{\nabla}, \widetilde{g})$ be a statistical manifold of dimension $m+p$. Let (M, ∇, g) be a statistical submanifold of $(\widetilde{M}, \widetilde{\nabla}, \widetilde{g})$. For detail, refer to $[4,9]$ for example. By definition, we have $h, h^{*} \in \Gamma\left(T^{\perp} M \otimes T M^{(0,2)}\right), A, A^{*} \in \Gamma\left(\left(T^{\perp} M\right)^{*} \otimes T M^{(1,1)}\right)$ and connections D, D^{*} of the normal bundle $T^{\perp} M$ satisfying the Gauss and Weingarten formulas:

$$
\left\{\begin{array} { l }
{ \widetilde { \nabla } _ { X } Y = \nabla _ { X } Y + h (X , Y) , } \\
{ \widetilde { \nabla } _ { X } \xi = - A _ { \xi } X + D _ { X } \xi , }
\end{array} \quad \left\{\begin{array}{l}
\widetilde{\nabla}_{X}^{*} Y=\nabla_{X}^{*} Y+h^{*}(X, Y), \\
\widetilde{\nabla}_{X}^{*} \xi=-A_{\xi}^{*} X+D_{X}^{*} \xi
\end{array}\right.\right.
$$

for $X, Y \in \Gamma(T M)$ and $\xi \in \Gamma\left(T^{\perp} M\right)$. We denote the mean curvature vector fields of M for $\widetilde{\nabla}$ and $\widetilde{\nabla}^{*}$, respectively, by

$$
\begin{equation*}
H=\frac{1}{m} \operatorname{tr}_{g} h, \quad H^{*}=\frac{1}{m} \operatorname{tr}_{g} h^{*}, \tag{3.10}
\end{equation*}
$$

and write

$$
\|H\|^{2}=\widetilde{g}(H, H), \quad\left\|H^{*}\right\|^{2}=\widetilde{g}\left(H^{*}, H^{*}\right)
$$

The inclusion map $\iota: M \rightarrow \widetilde{M}$ can be considered as a statistical immersion of (M, ∇, g) into $(\widetilde{M}, \widetilde{\nabla}, \widetilde{g})$.
Definition 3.3. A statistical immersion is said to be doubly totally-geodesic if $h=h^{*}=0$, and doubly totally-umbilical if $h=g \otimes H, h^{*}=g \otimes H^{*}$. Furthermore, a statistical immersion is said to be doubly minimal if $H=H^{*}=0$.

A doubly totally-geodesic statistical submanifold is also called a doubly autoparallel statistical submanifold. Remark that a doubly minimal statistical immersion of (M, ∇, g) into $(\widetilde{M}, \widetilde{\nabla}, \widetilde{g})$ is an isometric minimal immersion of (M, g) into $(\widetilde{M}, \widetilde{g})$.

Our Gauss equations are the following:

$$
\begin{aligned}
\widetilde{g}(\widetilde{R}(X, Y) Z, W)= & g(R(X, Y) Z, W) \\
& -\widetilde{g}\left(h(Y, Z), h^{*}(X, W)\right)+\widetilde{g}\left(h(X, Z), h^{*}(Y, W)\right), \\
2 \widetilde{g}(\widetilde{S}(X, Y) Z, W)= & 2 g(S(X, Y) Z, W) \\
& -\widetilde{g}\left(h(Y, Z), h^{*}(X, W)\right)+\widetilde{g}\left(h(X, Z), h^{*}(Y, W)\right) \\
& -\widetilde{g}\left(h^{*}(Y, Z), h(X, W)\right)+\widetilde{g}\left(h^{*}(X, Z), h(Y, W)\right), \\
4 \widetilde{g}\left(R^{\widetilde{g}}(X, Y) Z, W\right)= & 4 g\left(R^{g}(X, Y) Z, W\right) \\
& -\widetilde{g}\left(h(Y, Z)+h^{*}(Y, Z), h(X, W)+h^{*}(X, W)\right) \\
& +\widetilde{g}\left(h(X, Z)+h^{*}(X, Z), h(Y, W)+h^{*}(Y, W)\right)
\end{aligned}
$$

for $X, Y, Z, W \in \Gamma(T M)$.
Proposition 3.4. Let (M, ∇, g) be an $m(\geq 2)$-dimensional statistical submanifold in an $(m+p)$-dimensional statistical manifold $(\widetilde{M}, \widetilde{\nabla}, \widetilde{g})$ with the U sectional curvature $\mathcal{K}^{\widetilde{U}}$. Then

$$
\begin{equation*}
\delta_{(\emptyset)}^{U} \leq b(\emptyset) \max \mathcal{K}^{\widetilde{U}}+c(\emptyset)\left(\|H\|^{2}+\left\|H^{*}\right\|^{2}\right) / 2 \tag{3.11}
\end{equation*}
$$

where $\max \mathcal{K}^{\widetilde{U}}=\max \left\{\mathcal{K}^{\widetilde{U}}(\Pi) \mid \Pi:\right.$ plane section of $\left.T M\right\}$.
Suppose that $(\widetilde{\nabla}, \widetilde{g})$ is of constant U sectional curvature. The equality holds at $x \in M$ if and only if $h_{x}=g_{x} \otimes H_{x}, h_{x}^{*}=g_{x} \otimes H_{x}^{*}$.

Proof. Using an orthonormal frame $\left\{e_{1}, \ldots, e_{m}, \xi_{1}, \ldots, \xi_{p}\right\}$ adapted for M, we express

$$
h\left(e_{i}, e_{j}\right)=\sum h_{i j}^{\alpha} \xi_{\alpha}, \quad h^{*}\left(e_{i}, e_{j}\right)=\sum h_{i j}^{* \alpha} \xi_{\alpha} .
$$

As in the proof of Lemma 3.1 in [9], by the Gauss equations we have

$$
\begin{aligned}
& 2 \sum_{1 \leq i<j \leq m} \mathcal{K}^{U}\left(e_{i} \wedge e_{j}\right) \\
= & 2 \sum_{1 \leq i<j \leq m}\left(2 \mathcal{K}^{g}-\mathcal{K}\right)\left(e_{i} \wedge e_{j}\right) \\
= & 2 \sum_{1 \leq i<j \leq m}^{p}\left(2 \mathcal{K}^{\widetilde{g}}-\widetilde{\mathcal{K}}\right)\left(e_{i} \wedge e_{j}\right) \\
& +\sum_{\alpha=1}^{p} \sum_{1 \leq i<j \leq m}\left(h_{i i}^{\alpha} h_{j j}^{\alpha}+h_{i i}^{* \alpha} h_{j j}^{* \alpha}-\left(h_{i j}^{\alpha}\right)^{2}-\left(h_{i j}^{* \alpha}\right)^{2}\right) \\
\leq & m(m-1) \max \left(2 \mathcal{K}^{\widetilde{g}}-\widetilde{\mathcal{K}}\right)+\sum_{\alpha=1}^{p} \sum_{1 \leq i<j \leq m}\left(h_{i i}^{\alpha} h_{j j}^{\alpha}+h_{i i}^{* \alpha} h_{j j}^{* \alpha}\right)
\end{aligned}
$$

Considering $h_{i i}^{\alpha}$ and $h_{i i}^{* \alpha}$ as a_{i} in (3.1) with $k=0$, respectively, we have

$$
2 \delta_{(\emptyset)}^{U} \leq m(m-1)\left\{\max \mathcal{K}^{\widetilde{U}}+\left(\|H\|^{2}+\left\|H^{*}\right\|^{2}\right) / 2\right\}
$$

The latter part of the proposition is easy to obtain from (3.2).
Remark 3.5. In [9], we had the following inequality (Theorem 3.7):

$$
\begin{equation*}
\delta_{(\emptyset)}^{U} \leq b(\emptyset) \max \mathcal{K}^{\widetilde{U}}+\left(m^{3} / 8\right)\left(\|H\|^{2}+\left\|H^{*}\right\|^{2}\right) / 2 \tag{3.12}
\end{equation*}
$$

which characterizes doubly totally-umbilical surfaces and doubly totally-geodesic submanifolds as the equality holding cases at every point. It is easy to see that (3.11) coincides (3.12) in the case where $m=2$. The inequality (3.12) was obtained from the relation between the Ricci curvature and the squared mean curvatures.

Theorem 3.6. Let (M, ∇, g) be an $m(\geq 3)$-dimensional statistical submanifold in an $(m+p)$-dimensional statistical manifold $(\widetilde{M}, \widetilde{\nabla}, \widetilde{g})$ with the U sectional curvature $\mathcal{K} \widetilde{U}$. For $\left(m_{1}, \ldots, m_{k}\right) \in \mathcal{S}(m, k)$, we have

$$
\begin{align*}
\delta_{\left(m_{1}, \ldots, m_{k}\right)}^{U} \leq & b\left(m_{1}, \ldots, m_{k}\right) \max \mathcal{K}^{\widetilde{U}} \tag{3.13}\\
& +c\left(m_{1}, \ldots, m_{k}\right)\left(\|H\|^{2}+\left\|H^{*}\right\|^{2}\right) / 2
\end{align*}
$$

where $\max \mathcal{K}^{\widetilde{U}}=\max \left\{\mathcal{K}^{\widetilde{U}}(\Pi) \mid \Pi:\right.$ plane section of $\left.T M\right\}$.
Suppose that $(\widetilde{\nabla}, \widetilde{g})$ is of constant U sectional curvature. The equality holds at $x \in M$ if and only if there exist mutually orthogonal subspaces L_{1}, \ldots, L_{k} of $T_{x} M$ with $\operatorname{dim} L_{q}=m_{q}, q=1, \ldots, k$, and adapted orthonormal basis satisfying

$$
\begin{align*}
& L_{q}=\operatorname{span}\left\{e_{l_{q-1}+1}, \ldots, e_{l_{q}}\right\} \tag{3.14}\\
& \sum_{i=1}^{l_{1}} h_{i i}^{\alpha}=\cdots=\sum_{i=l_{k-1}+1}^{l_{k}} h_{i i}^{\alpha}=h_{l_{k}+1 l_{k}+1}^{\alpha}=\cdots=h_{m m}^{\alpha} \tag{3.15}
\end{align*}
$$

$$
\begin{gather*}
\sum_{i=1}^{l_{1}} h_{i i}^{* \alpha}=\cdots=\sum_{i=l_{k-1}+1}^{l_{k}} h_{i i}^{* \alpha}=h_{l_{k}+1 l_{k}+1}^{* \alpha}=\cdots=h_{m m}^{* \alpha} \tag{3.16}\\
h_{i j}^{\alpha}=h_{i j}^{* \alpha}=0 \quad \text { for } \quad i \leq l_{q}<l_{q}+1 \leq j, \quad q=1, \ldots, k \tag{3.17}\\
\text { or } \quad l_{k}+1 \leq i<j \leq m
\end{gather*}
$$

Proof. Let L_{1}, \ldots, L_{k} be mutually orthogonal subspaces of $T_{x} M$ with $\operatorname{dim} L_{q}=$ $m_{q}, q=1, \ldots, k$ and $\left\{e_{l_{q-1}+1}, \ldots, e_{l_{q}}\right\}$ an orthonormal basis of L_{q}. As in the proof of Proposition 3.4, by the Gauss equations we have

$$
\begin{aligned}
& 2 \sum_{1 \leq i<j \leq m} \mathcal{K}^{U}\left(e_{i} \wedge e_{j}\right)-2 \sum_{q=1}^{k} \sum_{l_{q-1}+1 \leq i<j \leq l_{q}} \mathcal{K}^{U}\left(e_{i} \wedge e_{j}\right) \\
& =2 \sum_{1 \leq i<j \leq m} \mathcal{K}^{\widetilde{U}}\left(e_{i} \wedge e_{j}\right) \\
& +\sum_{\alpha=1}^{p} \sum_{1 \leq i<j \leq m}\left(h_{i i}^{\alpha} h_{j j}^{\alpha}+h_{i i}^{* \alpha} h_{j j}^{* \alpha}-\left(h_{i j}^{\alpha}\right)^{2}-\left(h_{i j}^{* \alpha}\right)^{2}\right) \\
& -2 \sum_{q=1}^{k} \sum_{l_{q-1}+1 \leq i<j \leq l_{q}} \mathcal{K}^{\widetilde{U}}\left(e_{i} \wedge e_{j}\right) \\
& -\sum_{\alpha=1}^{p} \sum_{q=1}^{k} \sum_{l_{q-1}+1 \leq i<j \leq l_{q}}\left(h_{i i}^{\alpha} h_{j j}^{\alpha}+h_{i i}^{* \alpha} h_{j j}^{* \alpha}-\left(h_{i j}^{\alpha}\right)^{2}-\left(h_{i j}^{* \alpha}\right)^{2}\right) \\
& \leq 2 b\left(m_{1}, \ldots, m_{k}\right) \max \mathcal{K}^{\widetilde{U}} \\
& +\sum_{\alpha=1}^{p}\left\{\sum_{1 \leq i<j \leq m}\left(h_{i i}^{\alpha} h_{j j}^{\alpha}+h_{i i}^{* \alpha} h_{j j}^{* \alpha}\right)-\sum_{q=1}^{k} \sum_{l_{q-1}+1 \leq i<j \leq l_{q}}\left(h_{i i}^{\alpha} h_{j j}^{\alpha}+h_{i i}^{* \alpha} h_{j j}^{* \alpha}\right)\right\} .
\end{aligned}
$$

In the case where $\mathcal{K}^{\widetilde{U}}$ is constant, we remark that the equality holds if and only if (3.17) holds.

Considering $h_{i i}^{\alpha}$ and $h_{i i}^{* \alpha}$ as a_{i} in (3.3), respectively, we have

$$
\begin{aligned}
& \rho^{U}-2 \sum_{q=1}^{k} \sum_{l_{q-1}+1 \leq i<j \leq l_{q}} \mathcal{K}^{U}\left(e_{i} \wedge e_{j}\right) \\
\leq & 2 b\left(m_{1}, \ldots, m_{k}\right) \max \mathcal{K}^{\widetilde{U}}+c\left(m_{1}, \ldots, m_{k}\right)\left(\|H\|^{2}+\left\|H^{*}\right\|^{2}\right) .
\end{aligned}
$$

The latter part of the proposition is easy to obtain from (3.4).
Corollary $3.7([2])$. Let $(\widetilde{M}, \widetilde{g})$ be an $(m+p)$-dimensional Riemannian manifold of constant curvature \widetilde{c}, and (M, g) an m-dimensional Riemannian submanifold with the mean curvature vector field \widehat{H}. For $\left(m_{1}, \ldots, m_{k}\right) \in \mathcal{S}(m, k)$, we have

$$
\begin{equation*}
\delta_{\left(m_{1}, \ldots, m_{k}\right)} \leq b\left(m_{1}, \ldots, m_{k}\right) \widetilde{c}+c\left(m_{1}, \ldots, m_{k}\right)\|\widehat{H}\|^{2} \tag{3.18}
\end{equation*}
$$

Proof. In Theorem 3.6, consider the case where $\widetilde{\nabla}=\nabla^{\widetilde{g}}$. Remark that $\nabla=\nabla^{g}$ and $H=H^{*}=\widehat{H}$. Since $\mathcal{K}^{\widetilde{U}}=\widetilde{c}$, we have (3.18).

Corollary 3.8. Let (M, ∇, g) be an m-dimensional statistical submanifold in an $(m+p)$-dimensional Hessian manifold $(\widetilde{M}, \widetilde{\nabla}, \widetilde{g})$ of constant Hessian curvature κ. For $\left(m_{1}, \ldots, m_{k}\right) \in \mathcal{S}(m, k)$, we have

$$
\begin{align*}
\delta_{\left(m_{1}, \ldots, m_{k}\right)}^{U} \leq & b\left(m_{1}, \ldots, m_{k}\right)(-\kappa / 2) \tag{3.19}\\
& +c\left(m_{1}, \ldots, m_{k}\right)\left(\|H\|^{2}+\left\|H^{*}\right\|^{2}\right) / 2
\end{align*}
$$

Proof. By definition, $R^{\widetilde{\nabla}}=0$ and \widetilde{g} is of constant curvature $-\kappa / 4$ (see [10]). Therefore, we have $\mathcal{K} \widetilde{U}=-\kappa / 2$. Theorem 3.6 implies (3.19).

In the case where $k=2$ and $m_{1}=m_{2}=2$, the inequality was essentially obtained by [7].

4. Examples

Example 4.1. The triple $(\widetilde{M}, \widetilde{\nabla}, \widetilde{g})$ defined below is an n-dimensional statistical manifold such that the U sectional curvature vanishes.

$$
\begin{aligned}
& \widetilde{M}=\left(\mathbb{R}^{+}\right)^{n}=\left\{y=\left(y^{1}, \ldots, y^{n}\right) \in \mathbb{R}^{n} \mid y^{1}>0, \ldots, y^{n}>0\right\} \\
& \widetilde{g}=\sum_{i=1}^{n}\left(d y^{i}\right)^{2} \\
& \widetilde{\nabla}_{\widetilde{\partial}_{j}} \widetilde{\partial}_{i}=\widetilde{K}\left(\widetilde{\partial}_{j}, \widetilde{\partial}_{i}\right)=-\delta_{j i}\left(y^{i}\right)^{-1} \widetilde{\partial}_{i}
\end{aligned}
$$

where $\widetilde{\partial}_{i}=\partial / \partial y^{i}$. In fact, it is a Hessian manifold of constant Hessian curvature 0 . For $\left(n_{1}, \ldots, n_{k}\right) \in \mathcal{S}(n, k)$, we have $\delta_{\left(n_{1}, \ldots, n_{k}\right)}^{\widetilde{D}}=0$.

Example 4.2. For $\alpha \in \mathbb{R}$, the triple $\left(\widetilde{M}, \widetilde{\nabla}^{(\alpha)}, \widetilde{g}\right)$ defined below is an n dimensional statistical manifold such that the U sectional curvature is negative constant $-\left(1+\alpha^{2}\right)$.

$$
\begin{aligned}
& \widetilde{M}=\mathbb{H}^{n}=\left\{y=\left(y^{1}, \ldots, y^{n-1}, y^{n}\right) \in \mathbb{R}^{n} \mid y^{n}>0\right\} \\
& \widetilde{g}=\left(y^{n}\right)^{-2} \sum_{A=1}^{n}\left(d y^{A}\right)^{2}, \\
& \widetilde{K}\left(\widetilde{\partial}_{i}, \widetilde{\partial}_{j}\right)=\delta_{i j}\left(y^{n}\right)^{-1} \widetilde{\partial}_{n} \\
& \widetilde{K}\left(\widetilde{\partial}_{i}, \widetilde{\partial}_{n}\right)=\widetilde{K}\left(\widetilde{\partial}_{n}, \widetilde{\partial}_{i}\right)=\left(y^{n}\right)^{-1} \widetilde{\partial}_{i}, \\
& \widetilde{K}\left(\widetilde{\partial}_{n}, \widetilde{\partial}_{n}\right)=2\left(y^{n}\right)^{-1} \widetilde{\partial}_{n}
\end{aligned}
$$

and $\widetilde{\nabla}^{(\alpha)}=\nabla^{\widetilde{g}}+\alpha \widetilde{K}$ as in Remark 2.3, where $\widetilde{\partial}_{A}=\partial / \partial y^{A}, A=1, \ldots, n$ and $i, j=1, \ldots, n-1$. Then we have

$$
[\widetilde{K}, \widetilde{K}](X, Y) Z=\widetilde{g}(Y, Z) X-\widetilde{g}(X, Z) Y
$$

$$
\widetilde{U}(X, Y) Z=-\left(1+\alpha^{2}\right)\{\widetilde{g}(Y, Z) X-\widetilde{g}(X, Z) Y\}
$$

for $X, Y, Z \in \Gamma(T \widetilde{M})$.
For $\left(n_{1}, \ldots, n_{k}\right) \in \mathcal{S}(n, k)$, we have $\delta_{\left(n_{1}, \ldots, n_{k}\right)}^{\widetilde{U}}=-b\left(n_{1}, \ldots, n_{k}\right)\left(1+\alpha^{2}\right)$.
Remark that $\left(\widetilde{M}, \widetilde{\nabla}^{(1)}, \widetilde{g}\right)$ is a Hessian manifold of constant Hessian curvature 4.

Example 4.3 (Example 2.15 in [5]). Let $\left(\mathbb{S}^{2 n+1}, g, \phi, \xi\right)$ be a unit hypersphere in the complex Euclidean space with the standard Sasakian structure. Set $K(X, Y)=g(X, \xi) g(Y, \xi) \xi$ for any $X, Y \in \Gamma\left(T \mathbb{S}^{2 n+1}\right)$, and $\nabla=\nabla^{g}+K$. Then the statistical manifold $\left(\mathbb{S}^{2 n+1}, \nabla, g\right)$ is of constant U sectional curvature one. In fact, we have $U=R^{g}$. For $\left(m_{1}, \ldots, m_{k}\right) \in \mathcal{S}(2 n+1, k)$, we have $\delta_{\left(m_{1}, \ldots, m_{k}\right)}^{U}=b\left(m_{1}, \ldots, m_{k}\right)$.

As an application of Proposition 3.4 and Theorem 3.6, we have the following non-existence of doubly minimal statistical immersions:

Corollary 4.4. Let \widetilde{M} be a statistical manifold of non-positive U sectional curvature. Let M be an m-dimensional statistical manifold. Suppose that there exist non-negative integer $k,\left(m_{1}, \ldots, m_{k}\right) \in \mathcal{S}(m, k)$ and a point $x \in M$ such that $\delta_{\left(m_{1}, \ldots, m_{k}\right)}^{U}(x)$ is positive. Then M does not admit doubly minimal statistical immersion into \widetilde{M} for any codimension, in particular, \widetilde{M} as in Examples 4.1 and 4.2.

We will give basic properties and examples of doubly minimal statistical immersions in another paper.

Examples of doubly totally-umbilical statistical submanifolds, which are submanifolds satisfying the equality in Proposition 3.4, are given in [9]:

Example 4.5. Let $\left(\widetilde{M}, \widetilde{\nabla}^{(\alpha)}, \widetilde{g}\right)$ be a statistical manifold of dimension $n=$ $m+p$ in Example 4.2.
(1) For $\left(a^{1}, \ldots, a^{p}\right) \in \mathbb{R}^{p}$, the inclusion map $\iota: \mathbb{H}^{m} \ni\left(x^{1}, \ldots, x^{m-1}, x^{m}\right) \mapsto$ $\left(a^{1}, \ldots, a^{p}, x^{1}, \ldots, x^{m-1}, x^{m}\right) \in \mathbb{H}^{n}$ is doubly totally-geodesic. In fact, we have $h=h^{*}=0$, and the induced statistical structure (∇, g) on \mathbb{H}^{m} is same as in Example 4.2. Accordingly, we have

$$
\begin{aligned}
& \delta_{\left(m_{1}, \ldots, m_{k}\right)}^{U}=-b\left(m_{1}, \ldots, m_{k}\right)\left(1+\alpha^{2}\right) \\
& b\left(m_{1}, \ldots, m_{k}\right) \max \mathcal{K}^{\widetilde{U}}+c\left(m_{1}, \ldots, m_{k}\right)\left(\|H\|^{2}+\left\|H^{*}\right\|^{2}\right) / 2 \\
= & -b\left(m_{1}, \ldots, m_{k}\right)\left(1+\alpha^{2}\right) .
\end{aligned}
$$

(2) For $\left(a^{1}, \ldots, a^{p-1}, a^{p}\right) \in \mathbb{R}^{p-1} \times \mathbb{R}^{+}$, the inclusion map

$$
\iota: \mathbb{R}^{m} \ni\left(x^{1}, \ldots, x^{m}\right) \mapsto\left(x^{1}, \ldots, x^{m}, a^{1}, \ldots, a^{p-1}, a^{p}\right) \in \mathbb{H}^{n}
$$

is doubly totally-umbilical. In fact, the induced statistical structure (∇, g) on \mathbb{R}^{m} is given as

$$
g=\left(a^{p}\right)^{-2} \sum_{j=1}^{m}\left(d x^{j}\right)^{2}, \quad \nabla_{\partial_{j}} \partial_{i}=\nabla_{\partial_{j}}^{g} \partial_{i}=0
$$

and we have

$$
\begin{aligned}
h & =(1+\alpha) a^{p} g \otimes\left(\partial / \partial y^{n}\right)
\end{aligned}=g \otimes H,
$$

Accordingly, we have

$$
\begin{aligned}
& \delta_{\left(m_{1}, \ldots, m_{k}\right)}^{U}=0, \\
& b\left(m_{1}, \ldots, m_{k}\right) \max \mathcal{K}^{\widetilde{U}}+c\left(m_{1}, \ldots, m_{k}\right)\left(\|H\|^{2}+\left\|H^{*}\right\|^{2}\right) / 2 \\
= & \left(1+\alpha^{2}\right)\left\{c\left(m_{1}, \ldots, m_{k}\right)-b\left(m_{1}, \ldots, m_{k}\right)\right\} .
\end{aligned}
$$

Remark that $c\left(m_{1}, \ldots, m_{k}\right)-b\left(m_{1}, \ldots, m_{k}\right) \geq 0$ and the equality holds if and only if $k=0$. Therefore, the above inclusion map ι satisfies the equality in (3.11), but does not in (3.13).

Acknowledgments. The authors wish to express their gratitude to Yukihiko Okuyama and Kimitake Sato for their kind help.

References

[1] M. E. Aydin, A. Mihai, and I. Mihai, Some inequalities on submanifolds in statistical manifolds of constant curvature, Filomat 29 (2015), no. 3, 465-476. https://doi.org/ 10.2298/FIL1503465A
[2] B.-Y. Chen, A general optimal inequality for arbitrary Riemannian submanifolds, JIPAM. J. Inequal. Pure Appl. Math. 6 (2005), no. 3, Article 77, 10 pp.
[3] B.-Y. Chen, A. Mihai, and I. Mihai, A Chen first inequality for statistical submanifolds in Hessian manifolds of constant Hessian curvature, Results Math. 74 (2019), no. 4, Paper No. 165, 11 pp. https://doi.org/10.1007/s00025-019-1091-y
[4] H. Furuhata and I. Hasegawa, Submanifold theory in holomorphic statistical manifolds, in Geometry of Cauchy-Riemann submanifolds, 179-215, Springer, Singapore, 2016.
[5] H. Furuhata, I. Hasegawa, Y. Okuyama, K. Sato, and M. H. Shahid, Sasakian statistical manifolds, J. Geom. Phys. 117 (2017), 179-186. https://doi.org/10.1016/j. geomphys.2017.03.010
[6] C. W. Lee, D. W. Yoon, and J. W. Lee, A pinching theorem for statistical manifolds with Casorati curvatures, J. Nonlinear Sci. Appl. 10 (2017), no. 9, 4908-4914. https: //doi.org/10.22436/jnsa.010.09.31
[7] A. Mihai and I. Mihai, The $\delta(2,2)$-invariant on statistical submanifolds in Hessian manifolds of constant Hessian curvature, Entropy 22 (2020), no. 2, Paper No. 164, 8 pp. https://doi.org/10.3390/e22020164
[8] B. Opozda, A sectional curvature for statistical structures, Linear Algebra Appl. 497 (2016), 134-161. https://doi.org/10.1016/j.laa.2016.02.021
[9] N. Satoh, H. Furuhata, I. Hasegawa, T. Nakane, Y. Okuyama, K. Sato, M. H. Shahid, and A. N. Siddiqui, Statistical submanifolds from a viewpoint of the Euler inequality, Inf. Geom. 4 (2021), no. 1, 189-213. https://doi.org/10.1007/s41884-020-00032-4
[10] H. Shima, The geometry of Hessian structures, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2007. https://doi.org/10.1142/9789812707536

Hitoshi Furuhata
Department of Mathematics
Hokkaido University
Sapporo 060-0810, Japan
Email address: furuhata@math.sci.hokudai.ac.jp
Izumi Hasegawa
Hokkaido University of Education
Sapporo 002-8501, Japan
Email address: hase_izu@kuc.biglobe.ne.jp
Naoto Satoh
National Institute of Technology, Asahikawa College
Asahikawa 071-8142, Japan
Email address: n_satoh@asahikawa-nct.ac.jp

[^0]: Received May 21, 2021; Accepted October 14, 2021.
 2010 Mathematics Subject Classification. Primary 53B25, 53C15.
 Key words and phrases. Statistical manifold, statistical submanifold, sectional curvature, δ-invariant.

