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CHEN INVARIANTS AND STATISTICAL SUBMANIFOLDS

Hitoshi Furuhata, Izumi Hasegawa, and Naoto Satoh

Abstract. We define a kind of sectional curvature and δ-invariants for

statistical manifolds. For statistical submanifolds the sum of the squared

mean curvature and the squared dual mean curvature is bounded below
by using the δ-invariant. This inequality can be considered as a general-

ization of the so-called Chen inequality for Riemannian submanifolds.

1. Introduction

For a Riemannian manifold, B.-Y. Chen introduced functions δ(m1,...,mk),
new kinds of curvatures, which are defined in terms of sectional curvature and
its generalizations. They are now called Chen’s delta-invariants. He established
inequalities for Riemannian submanifolds which involve his delta-invariant and
the squared mean curvature. His work inspires many geometers and derives
inequalities for various settings. A general expression can be found in [2] for
example (see also Corollary 3.7).

The submanifold theory in statistical manifolds is a developing research field.
A statistical structure on a manifold is a pair of a Riemannian metric and an
affine connection satisfying certain conditions. By definition, a pair of a Rie-
mannian metric and its Levi-Civita connection is a basic example. Accord-
ingly, it is a natural problem to build corresponding inequalities for statistical
submanifolds. In fact, many geometers recently give various inequalities for
statistical submanifolds (for example, see [1, 3, 6, 7, 9] and references therein).
In particular, A. Mihai and I. Mihai [7] obtained an inequality for statistical
submanifolds corresponding to the one in terms of the δ(2,2)-invariant, though
they did not define the delta-invariant for a statistical manifold.

In this paper, we reformulate and generalize their inequality by defining
delta-invariants for a statistical manifold. To define the delta-invariants, we use
a new notion of sectional curvature for a statistical manifold, which is different
from the ones defined from the so-called the statistical curvature tensor field
S or the so-called the K-curvature tensor field [K,K] (see Section 2 and [4, 8]
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for sectional curvatures of statistical manifolds). We can define another delta-
invariant by using each of those sectional curvatures for a statistical manifold.
However, our delta-invariant δU is suitable for obtaining the relation between
the sum of the squared mean curvature and the squared dual mean curvature.
In this paper, we have:

Theorem 1.1. Let M̃ be an (m + p)-dimensional statistical manifold of con-
stant U sectional curvature κ̃. Let (M,∇, g) be an m-dimensional statistical

submanifold in M̃ with the mean curvature vector field H and the dual mean
curvature vector field H∗. Then the following inequality holds at each point of
M :

‖H‖2 + ‖H∗‖2 ≥ 2c(m1, . . . ,mk)−1{δU(m1,...,mk)
− b(m1, . . . ,mk)κ̃},

where δU(m1,...,mk)
is the delta-invariant of (∇, g) for U of type (m1, . . . ,mk),

and b(m1, . . . ,mk), c(m1, . . . ,mk) are positive constants defined in Definition
3.2.

The precise statement will be given as Proposition 3.4 and Theorem 3.6,
which will be presented in the style same to [2]. The statistical submanifolds
characterized by the equality will be stated there. The definitions concerning
U are presented in Section 2. For example, a Hessian manifold of constant

Hessian curvature is of constant U sectional curvature. If M̃ is such a manifold
and if k = 2 and m1 = m2 = 2, then the theorem is reduced to the inequality in

[7]. If M̃ is a Riemannian manifold, that is, if the considering affine connection
coincides with the Levi-Civita connection, then the theorem is reduced to the
inequality in [2]. A key of the proof is the algebraic identity (3.6), which seems
easier to understand than the proof of the known Riemannian version. As an
application, we have the non-existence of doubly minimal statistical subman-
ifolds in statistical manifolds of non-positive U sectional curvature (Corollary
4.4).

2. Curvatures for statistical structures

Throughout this paper, M denotes a smooth manifold of dimension m ≥ 2,
and all the objects are assumed to be smooth. Γ(E) denotes the set of sections
of a vector bundle E → M . For example, Γ(TM (p,q)) means the set of all the
tensor fields on M of type (p, q).

Let ∇ be an affine connection on M , and g ∈ Γ(TM (0,2)) a Riemannian
metric. We denote the Levi-Civita connection of g by ∇g.

We will start with the review of statistical structures.

Definition 2.1. A pair (∇, g) is called a statistical structure on M if ∇ is of
torsion free, and the Codazzi equation

(∇Xg)(Y,Z) = (∇Y g)(X,Z)

holds for any X,Y, Z ∈ Γ(TM).
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Remark 2.2. For an affine connection ∇ on a Riemannian manifold (M, g),
define ∇∗ by the formula

(2.1) Xg(Y,Z) = g(∇XY,Z) + g(Y,∇∗XZ)

for any X,Y, Z ∈ Γ(TM). Then ∇∗ is an affine connection on M which is called
the dual connection of ∇ with respect to g. Moreover, if (∇, g) is a statistical
structure, then (∇∗, g) is also a statistical structure and ∇g = 1

2 (∇ + ∇∗) as
well.

Remark 2.3. For a statistical structure (∇, g), we set

(2.2) KXY = ∇XY −∇gXY

for any X,Y ∈ Γ(TM). Then K ∈ Γ(TM (1,2)) satisfies

(2.3) KXY = KYX, g(KXY,Z) = g(Y,KXZ).

Conversely, for a Riemannian metric g if a given K ∈ Γ(TM (1,2)) satisfies (2.3),
then a pair (∇ = ∇g +K, g) becomes a statistical structure.

Besides, we have K = ∇g − ∇∗ = 1
2 (∇ − ∇∗). We often denote KXY by

K(X,Y ) as well.

Definition 2.4. Let (∇, g) be a statistical structure on M . We denote the
curvature tensor field of ∇ by R∇ or R for short, and denote R∇

∗
by R∗, R∇

g

by Rg in the similar fashion.
(1) We define

S(X,Y )Z =
1

2
{R(X,Y )Z +R∗(X,Y )Z}

for X,Y, Z ∈ Γ(TM), and call S ∈ Γ(TM (1,3)) the statistical curvature tensor
field of (∇, g).

(2) Let {e1, . . . , em} be an orthonormal basis of TxM . For a 2-dimensional
subspace ei ∧ ej , 1 ≤ i < j ≤ m, spanned by ei, ej ∈ TxM ,

KS(ei ∧ ej) = g(S(ei, ej)ej , ei)

is called the statistical sectional curvature of (∇, g) for a plane ei ∧ ej , which
is denoted by K(ei ∧ ej) for short. We remark that K(Π) for a 2-dimensional
subspace Π of TxM is well defined (see [4]). We denote by Kg the sectional
curvature of g, which is given by using Rg instead of S.

(3) We define a global scalar field

ρ =
∑

1≤i,j≤m

g(S(ei, ej)ej , ei) = 2
∑

1≤i<j≤m

K(ei ∧ ej),

and call ρ the statistical scalar curvature of (∇, g). The scalar curvature of g
is written by ρg = 2

∑
1≤i<j≤mKg(ei ∧ ej).

Remark 2.5. For a statistical structure (∇, g), the following holds:

S(X,Y )Z = Rg(X,Y )Z + [KX ,KY ]Z
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for X,Y, Z ∈ Γ(TM). If K = 0, that is, if ∇ is the Levi-Civita connection of
g, then we have S = Rg, and so K = Kg, ρ = ρg.

Definition 2.6. Let (∇, g) be a statistical structure on M . We set U ∈
Γ(TM (1,3)) as

U(X,Y )Z = Rg(X,Y )Z − [KX ,KY ]Z

= 2Rg(X,Y )Z − S(X,Y )Z

for X,Y, Z ∈ Γ(TM). As KS is well defined, we can define the U sectional
curvature KU (ei ∧ ej) of (∇, g) for a plane ei ∧ ej of TxM :

KU (ei ∧ ej) = g(U(ei, ej)ej , ei),

and the U scalar curvature :

ρU = 2
∑

1≤i<j≤m

KU (ei ∧ ej)

= 2ρg − ρ.

Remark that if K = 0, then U = Rg, and so KU = Kg, ρU = ρg. We
also remark that an m-dimensional Hessian manifold (M,∇, g) of constant
Hessian curvature κ is of constant U sectional curvature −κ/2, particularly,
ρU = −κm(m− 1)/4.

For integers m ≥ 3, k ≥ 1, let us denote by S(m, k) the set consisting of
unordered k-tuples (m1, . . . ,mk) of integers which satisfies

(2.4) 2 ≤ mq < m for q = 1, . . . , k, m ≥ lk,

where lk = m1 + · · ·+mk.

Definition 2.7. Let (M,∇, g) be a statistical manifold of dimension m ≥ 3.
(1) Let L be a subspace of TxM of dimension l ≥ 2 and {e1, . . . , el} an

orthonormal basis of L. We denote

ρU (L) = 2
∑

1≤i<j≤l

KU (ei ∧ ej).

Remark that ρU (TxM) = ρU (x).
(2) For (m1, . . . ,mk) ∈ S(m, k), we define a function δU(m1,...,mk)

: M → R
by

(2.5) δU(m1,...,mk)
(x) =

1

2

[
ρU (x)− inf

{ k∑
q=1

ρU (Lq) | L1, . . . , Lk

}]
,

where L1, . . . , Lk run over all k mutually orthogonal subspaces of TxM with
dimLq = mq, q = 1, . . . , k. We call δU(m1,...,mk)

the delta-invariant of (∇, g)

for U of type (m1, . . . ,mk). Furthermore, we write δU(∅)(x) = ρU (x)/2 for

convenience sake.
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Remark 2.8. For (M,∇g, g), our δU(m1,...,mk)
coincides with δ(m1,...,mk) defined

by B.-Y. Chen for a Riemannian manifold (M, g). We put 1/2 on the right
hand side of (2.5) because his scalar curvature is a half of ours.

3. Chen inequalities

We give an algebraic preliminary, which is a key lemma to prove our theo-
rems.

Lemma 3.1. For (m1, . . . ,mk) ∈ S(m, k), set l0 = 0 and lq = m1 + · · ·+mq

for q = 1, . . . , k. Suppose that m ≥ lk + 1. We have the following inequalities
(3.1) and (3.3) for arbitrary a1, . . . , am ∈ R:

(3.1) (m− lk − 1)
( m∑
i=lk+1

ai
)2 ≥ 2(m− lk)

∑
lk+1≤i<j≤m

aiaj .

The equality holds if and only if

(3.2) alk+1 = · · · = am.

It also holds for m ≥ 2 and k = 0.

(m+ k − lk − 1)
( m∑
i=1

ai
)2

(3.3)

≥ 2(m+ k − lk)
( ∑

1≤i<j≤m

aiaj −
k∑
q=1

∑
lq−1+1≤i<j≤lq

aiaj

)
.

The equality holds if and only if

(3.4) A1 = · · · = Ak = alk+1 = · · · = am,

where Aq = alq−1+1 + · · ·+ alq .

Proof. These are obtained directly from the following two identities:∑
lk+1≤i<j≤m

(ai − aj)2(3.5)

= (m− lk − 1)
( m∑
i=lk+1

ai
)2 − 2(m− lk)

∑
lk+1≤i<j≤m

aiaj ,

and ∑
lk+1≤i<j≤m

(ai − aj)2 +

k∑
q=1

m∑
i=lk+1

(Aq − ai)2 +
∑

1≤q<r≤k

(Aq −Ar)2(3.6)

= (m+ k − lk − 1)
( m∑
i=1

ai
)2
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− 2(m+ k − lk)
( ∑

1≤i<j≤m

aiaj −
k∑
q=1

∑
lq−1+1≤i<j≤lq

aiaj

)
.

The proof of (3.5) is as follows: We calculate∑
lk+1≤i<j≤m

(ai − aj)2 =
1

2

∑
lk+1≤i,j≤m

(ai − aj)2

= (m− lk)

m∑
i=lk+1

a2i −
( m∑
i=lk+1

ai
)2
,

and ∑
lk+1≤i<j≤m

(ai − aj)2

=
1

2

( ∑
lk+1≤i,j≤m

−
∑

lk+1≤i=j≤m

)
(a2i + a2j )− 2

∑
lk+1≤i<j≤m

aiaj

= (m− lk − 1)

m∑
i=lk+1

a2i − 2
∑

lk+1≤i<j≤m

aiaj .

Deleting the term
∑
a 2
i from these two identities implies (3.5).

The proof of (3.6) is as follows: We have

∑
1≤q<r≤k

AqAr +

k∑
q=1

Aq

m∑
i=lk+1

ai +
∑

lk+1≤i<j≤m

aiaj

=
∑

1≤i<j≤m

aiaj −
k∑
q=1

∑
lq−1+1≤i<j≤lq

aiaj ,

which implies that

[the left-hand side of (3.6)]

=
{

(m− lk − 1)

m∑
i=lk+1

a 2
i − 2

∑
lk+1≤i<j≤m

aiaj

}

+
{

(m− lk)

k∑
q=1

A 2
q + k

m∑
i=lk+1

a 2
i − 2

k∑
q=1

Aq

m∑
i=lk+1

ai

}

+
{

(k − 1)
k∑
q=1

A 2
q − 2

∑
1≤q<r≤k

AqAr

}

= (m+ k − lk − 1)
( k∑
q=1

A 2
q +

m∑
i=lk+1

a 2
i

)
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− 2
( ∑

1≤q<r≤k

AqAr +

k∑
q=1

Aq

m∑
i=lk+1

ai +
∑

lk+1≤i<j≤m

aiaj

)

= (m+ k − lk − 1)
{( k∑

q=1

Aq
)2

+
( m∑
i=lk+1

ai
)2}

− 2(m+ k − lk)
( ∑

1≤q<r≤k

AqAr +
∑

lk+1≤i<j≤m

aiaj

)
− 2

k∑
q=1

Aq

m∑
i=lk+1

ai

= (m+ k − lk − 1)
( k∑
q=1

Aq +

m∑
i=lk+1

ai
)2

− 2(m+ k − lk)
( ∑

1≤q<r≤k

AqAr +

k∑
q=1

Aq

m∑
i=lk+1

ai +
∑

lk+1≤i<j≤m

aiaj

)
= [the right-hand side of (3.6)].

�

Following [2], we adopt the symbols below for later use.

Definition 3.2. For (m1, . . . ,mk) ∈ S(m, k), we set the positive constants as
follow:

b(m1, . . . ,mk) =
1

2
m(m− 1)− 1

2

k∑
q=1

mq(mq − 1),(3.7)

c(m1, . . . ,mk) =
m2

2

m+ k −
∑k
q=1mq − 1

m+ k −
∑k
q=1mq

(3.8)

=
m2

2

m+ k − lk − 1

m+ k − lk
,

and moreover,

(3.9) b(∅) = c(∅) =
1

2
m(m− 1).

Let (M̃, ∇̃, g̃) be a statistical manifold of dimension m+p. Let (M,∇, g) be

a statistical submanifold of (M̃, ∇̃, g̃). For detail, refer to [4,9] for example. By
definition, we have h, h∗ ∈ Γ(T⊥M ⊗TM (0,2)), A,A∗ ∈ Γ((T⊥M)∗⊗TM (1,1))
and connections D,D∗ of the normal bundle T⊥M satisfying the Gauss and
Weingarten formulas:{

∇̃XY = ∇XY + h(X,Y ),

∇̃Xξ = −AξX +DXξ,

{
∇̃∗XY = ∇∗XY + h∗(X,Y ),

∇̃∗Xξ = −A∗ξX +D∗Xξ
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for X,Y ∈ Γ(TM) and ξ ∈ Γ(T⊥M). We denote the mean curvature vector

fields of M for ∇̃ and ∇̃∗, respectively, by

(3.10) H =
1

m
trgh, H∗ =

1

m
trgh

∗,

and write

‖H‖2 = g̃(H,H), ‖H∗‖2 = g̃(H∗, H∗).

The inclusion map ι : M → M̃ can be considered as a statistical immersion

of (M,∇, g) into (M̃, ∇̃, g̃).

Definition 3.3. A statistical immersion is said to be doubly totally-geodesic if
h = h∗ = 0, and doubly totally-umbilical if h = g ⊗H,h∗ = g ⊗H∗. Further-
more, a statistical immersion is said to be doubly minimal if H = H∗ = 0.

A doubly totally-geodesic statistical submanifold is also called a doubly auto-
parallel statistical submanifold. Remark that a doubly minimal statistical im-

mersion of (M,∇, g) into (M̃, ∇̃, g̃) is an isometric minimal immersion of (M, g)

into (M̃, g̃).
Our Gauss equations are the following:

g̃(R̃(X,Y )Z,W ) = g(R(X,Y )Z,W )

− g̃(h(Y,Z), h∗(X,W )) + g̃(h(X,Z), h∗(Y,W )),

2g̃(S̃(X,Y )Z,W ) = 2g(S(X,Y )Z,W )

− g̃(h(Y,Z), h∗(X,W )) + g̃(h(X,Z), h∗(Y,W ))

− g̃(h∗(Y,Z), h(X,W )) + g̃(h∗(X,Z), h(Y,W )),

4g̃(Rg̃(X,Y )Z,W ) = 4g(Rg(X,Y )Z,W )

− g̃(h(Y,Z) + h∗(Y,Z), h(X,W ) + h∗(X,W ))

+ g̃(h(X,Z) + h∗(X,Z), h(Y,W ) + h∗(Y,W ))

for X,Y, Z,W ∈ Γ(TM).

Proposition 3.4. Let (M,∇, g) be an m(≥ 2)-dimensional statistical sub-

manifold in an (m + p)-dimensional statistical manifold (M̃, ∇̃, g̃) with the U

sectional curvature KŨ . Then

(3.11) δU(∅) ≤ b(∅) maxKŨ + c(∅) (‖H‖2 + ‖H∗‖2)/2,

where max KŨ = max
{
KŨ (Π) | Π : plane section of TM

}
.

Suppose that (∇̃, g̃) is of constant U sectional curvature. The equality holds
at x ∈M if and only if hx = gx ⊗Hx, h∗x = gx ⊗H∗x.

Proof. Using an orthonormal frame {e1, . . . , em, ξ1, . . . , ξp} adapted for M , we
express

h(ei, ej) =
∑

hαijξα, h∗(ei, ej) =
∑

h∗αij ξα.
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As in the proof of Lemma 3.1 in [9], by the Gauss equations we have

2
∑

1≤i<j≤m

KU (ei ∧ ej)

= 2
∑

1≤i<j≤m

(2Kg −K)(ei ∧ ej)

= 2
∑

1≤i<j≤m

(2Kg̃ − K̃)(ei ∧ ej)

+

p∑
α=1

∑
1≤i<j≤m

(
hαiih

α
jj + h∗αii h

∗α
jj − (hαij)

2 − (h∗αij )2
)

≤ m(m− 1) max(2Kg̃ − K̃) +

p∑
α=1

∑
1≤i<j≤m

(
hαiih

α
jj + h∗αii h

∗α
jj

)
.

Considering hαii and h∗αii as ai in (3.1) with k = 0, respectively, we have

2δU(∅) ≤ m(m− 1)
{

max KŨ + (‖H‖2 + ‖H∗‖2)/2
}
.

The latter part of the proposition is easy to obtain from (3.2). �

Remark 3.5. In [9], we had the following inequality (Theorem 3.7):

δU(∅) ≤ b(∅) maxKŨ + (m3/8) (‖H‖2 + ‖H∗‖2)/2,(3.12)

which characterizes doubly totally-umbilical surfaces and doubly totally-geod-
esic submanifolds as the equality holding cases at every point. It is easy to see
that (3.11) coincides (3.12) in the case where m = 2. The inequality (3.12) was
obtained from the relation between the Ricci curvature and the squared mean
curvatures.

Theorem 3.6. Let (M,∇, g) be an m(≥ 3)-dimensional statistical submanifold

in an (m + p)-dimensional statistical manifold (M̃, ∇̃, g̃) with the U sectional

curvature KŨ . For (m1, . . . ,mk) ∈ S(m, k), we have

δU(m1,...,mk)
≤ b(m1, . . . ,mk) maxKŨ(3.13)

+ c(m1, . . . ,mk)(‖H‖2 + ‖H∗‖2)/2,

where max KŨ = max
{
KŨ (Π) | Π : plane section of TM

}
.

Suppose that (∇̃, g̃) is of constant U sectional curvature. The equality holds
at x ∈M if and only if there exist mutually orthogonal subspaces L1, . . . , Lk of
TxM with dimLq = mq, q = 1, . . . , k, and adapted orthonormal basis satisfying

Lq = span{elq−1+1, . . . , elq},(3.14)

l1∑
i=1

hαii = · · · =
lk∑

i=lk−1+1

hαii = hαlk+1 lk+1 = · · · = hαmm,(3.15)
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l1∑
i=1

h∗αii = · · · =
lk∑

i=lk−1+1

h∗αii = h∗αlk+1 lk+1 = · · · = h∗αmm,(3.16)

hαij = h∗αij = 0 for i ≤ lq < lq + 1 ≤ j, q = 1, . . . , k,
or lk + 1 ≤ i < j ≤ m.(3.17)

Proof. Let L1, . . . , Lk be mutually orthogonal subspaces of TxM with dimLq =
mq, q = 1, . . . , k and {elq−1+1, . . . , elq} an orthonormal basis of Lq. As in the
proof of Proposition 3.4, by the Gauss equations we have

2
∑

1≤i<j≤m

KU (ei ∧ ej)− 2

k∑
q=1

∑
lq−1+1≤i<j≤lq

KU (ei ∧ ej)

= 2
∑

1≤i<j≤m

KŨ (ei ∧ ej)

+

p∑
α=1

∑
1≤i<j≤m

(
hαiih

α
jj + h∗αii h

∗α
jj − (hαij)

2 − (h∗αij )2
)

− 2

k∑
q=1

∑
lq−1+1≤i<j≤lq

KŨ (ei ∧ ej)

−
p∑

α=1

k∑
q=1

∑
lq−1+1≤i<j≤lq

(
hαiih

α
jj + h∗αii h

∗α
jj − (hαij)

2 − (h∗αij )2
)

≤ 2b(m1, . . . ,mk) maxKŨ

+

p∑
α=1

{ ∑
1≤i<j≤m

(hαiih
α
jj + h∗αii h

∗α
jj )−

k∑
q=1

∑
lq−1+1≤i<j≤lq

(hαiih
α
jj + h∗αii h

∗α
jj )
}
.

In the case where KŨ is constant, we remark that the equality holds if and only
if (3.17) holds.

Considering hαii and h∗αii as ai in (3.3), respectively, we have

ρU − 2

k∑
q=1

∑
lq−1+1≤i<j≤lq

KU (ei ∧ ej)

≤ 2b(m1, . . . ,mk) maxKŨ + c(m1, . . . ,mk)
(
‖H‖2 + ‖H∗‖2

)
.

The latter part of the proposition is easy to obtain from (3.4). �

Corollary 3.7 ([2]). Let (M̃, g̃) be an (m+ p)-dimensional Riemannian man-
ifold of constant curvature c̃, and (M, g) an m-dimensional Riemannian sub-

manifold with the mean curvature vector field Ĥ. For (m1, . . . ,mk) ∈ S(m, k),
we have

δ(m1,...,mk) ≤ b(m1, . . . ,mk)c̃+ c(m1, . . . ,mk)‖Ĥ‖2.(3.18)
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Proof. In Theorem 3.6, consider the case where ∇̃ = ∇g̃. Remark that ∇ = ∇g
and H = H∗ = Ĥ. Since KŨ = c̃, we have (3.18). �

Corollary 3.8. Let (M,∇, g) be an m-dimensional statistical submanifold in

an (m + p)-dimensional Hessian manifold (M̃, ∇̃, g̃) of constant Hessian cur-
vature κ. For (m1, . . . ,mk) ∈ S(m, k), we have

δU(m1,...,mk)
≤ b(m1, . . . ,mk)(−κ/2)(3.19)

+ c(m1, . . . ,mk)
(
‖H‖2 + ‖H∗‖2

)
/2.

Proof. By definition, R∇̃ = 0 and g̃ is of constant curvature −κ/4 (see [10]).

Therefore, we have KŨ = −κ/2. Theorem 3.6 implies (3.19). �

In the case where k = 2 and m1 = m2 = 2, the inequality was essentially
obtained by [7].

4. Examples

Example 4.1. The triple (M̃, ∇̃, g̃) defined below is an n-dimensional statis-
tical manifold such that the U sectional curvature vanishes.

M̃ = (R+)n =
{
y = (y1, . . . , yn) ∈ Rn | y1 > 0, . . . , yn > 0

}
,

g̃ =

n∑
i=1

(dyi)2,

∇̃∂̃j ∂̃i = K̃(∂̃j , ∂̃i) = −δji(yi)−1∂̃i,

where ∂̃i = ∂/∂yi. In fact, it is a Hessian manifold of constant Hessian curva-

ture 0. For (n1, . . . , nk) ∈ S(n, k), we have δŨ(n1,...,nk)
= 0.

Example 4.2. For α ∈ R, the triple (M̃, ∇̃(α), g̃) defined below is an n-
dimensional statistical manifold such that the U sectional curvature is negative
constant −(1 + α2).

M̃ = Hn =
{
y = (y1, . . . , yn−1, yn) ∈ Rn | yn > 0

}
,

g̃ = (yn)−2
n∑

A=1

(dyA)2,

K̃(∂̃i, ∂̃j) = δij(y
n)−1∂̃n,

K̃(∂̃i, ∂̃n) = K̃(∂̃n, ∂̃i) = (yn)−1∂̃i,

K̃(∂̃n, ∂̃n) = 2(yn)−1∂̃n,

and ∇̃(α) = ∇g̃ + αK̃ as in Remark 2.3, where ∂̃A = ∂/∂yA, A = 1, . . . , n and
i, j = 1, . . . , n− 1. Then we have

[K̃, K̃](X,Y )Z = g̃(Y,Z)X − g̃(X,Z)Y,
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Ũ(X,Y )Z = −(1 + α2){g̃(Y,Z)X − g̃(X,Z)Y }

for X,Y, Z ∈ Γ(TM̃).

For (n1, . . . , nk) ∈ S(n, k), we have δŨ(n1,...,nk)
= −b(n1, . . . , nk)(1 + α2).

Remark that (M̃, ∇̃(1), g̃) is a Hessian manifold of constant Hessian curvature
4.

Example 4.3 (Example 2.15 in [5]). Let (S2n+1, g, φ, ξ) be a unit hypersphere
in the complex Euclidean space with the standard Sasakian structure. Set
K(X,Y ) = g(X, ξ)g(Y, ξ)ξ for any X,Y ∈ Γ(TS2n+1), and ∇ = ∇g + K.
Then the statistical manifold (S2n+1,∇, g) is of constant U sectional curvature
one. In fact, we have U = Rg. For (m1, . . . ,mk) ∈ S(2n + 1, k), we have
δU(m1,...,mk)

= b(m1, . . . ,mk).

As an application of Proposition 3.4 and Theorem 3.6, we have the following
non-existence of doubly minimal statistical immersions:

Corollary 4.4. Let M̃ be a statistical manifold of non-positive U sectional
curvature. Let M be an m-dimensional statistical manifold. Suppose that there
exist non-negative integer k, (m1, . . . ,mk) ∈ S(m, k) and a point x ∈ M such
that δU(m1,...,mk)

(x) is positive. Then M does not admit doubly minimal statis-

tical immersion into M̃ for any codimension, in particular, M̃ as in Examples
4.1 and 4.2.

We will give basic properties and examples of doubly minimal statistical
immersions in another paper.

Examples of doubly totally-umbilical statistical submanifolds, which are sub-
manifolds satisfying the equality in Proposition 3.4, are given in [9]:

Example 4.5. Let (M̃, ∇̃(α), g̃) be a statistical manifold of dimension n =
m+ p in Example 4.2.

(1) For (a1, . . . , ap) ∈ Rp, the inclusion map ι : Hm 3 (x1, . . . , xm−1, xm) 7→
(a1, . . . , ap, x1, . . . , xm−1, xm) ∈ Hn is doubly totally-geodesic. In fact, we have
h = h∗ = 0, and the induced statistical structure (∇, g) on Hm is same as in
Example 4.2. Accordingly, we have

δU(m1,...,mk)
= −b(m1, . . . ,mk)(1 + α2),

b(m1, . . . ,mk) maxKŨ + c(m1, . . . ,mk)(‖H‖2 + ‖H∗‖2)/2

= − b(m1, . . . ,mk)(1 + α2).

(2) For (a1, . . . , ap−1, ap) ∈ Rp−1 × R+, the inclusion map

ι : Rm 3 (x1, . . . , xm) 7→ (x1, . . . , xm, a1, . . . , ap−1, ap) ∈ Hn
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is doubly totally-umbilical. In fact, the induced statistical structure (∇, g) on
Rm is given as

g = (ap)−2
m∑
j=1

(dxj)2, ∇∂j∂i = ∇g∂j∂i = 0,

and we have

h = (1 + α)apg ⊗ (∂/∂yn) = g ⊗H,
h∗ = (1− α)apg ⊗ (∂/∂yn) = g ⊗H∗.

Accordingly, we have

δU(m1,...,mk)
= 0,

b(m1, . . . ,mk) maxKŨ + c(m1, . . . ,mk)(‖H‖2 + ‖H∗‖2)/2

= (1 + α2){c(m1, . . . ,mk)− b(m1, . . . ,mk)}.

Remark that c(m1, . . . ,mk)− b(m1, . . . ,mk) ≥ 0 and the equality holds if and
only if k = 0. Therefore, the above inclusion map ι satisfies the equality in
(3.11), but does not in (3.13).
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