CHEN INVARIANTS AND STATISTICAL SUBMANIFOLDS

HITOSHI FURUHATA, IZUMI HASEGAWA, AND NAOTO SATOH

ABSTRACT. We define a kind of sectional curvature and δ -invariants for statistical manifolds. For statistical submanifolds the sum of the squared mean curvature and the squared dual mean curvature is bounded below by using the δ -invariant. This inequality can be considered as a generalization of the so-called Chen inequality for Riemannian submanifolds.

1. Introduction

For a Riemannian manifold, B.-Y. Chen introduced functions $\delta_{(m_1,\ldots,m_k)}$, new kinds of curvatures, which are defined in terms of sectional curvature and its generalizations. They are now called Chen's delta-invariants. He established inequalities for Riemannian submanifolds which involve his delta-invariant and the squared mean curvature. His work inspires many geometers and derives inequalities for various settings. A general expression can be found in [2] for example (see also Corollary 3.7).

The submanifold theory in statistical manifolds is a developing research field. A statistical structure on a manifold is a pair of a Riemannian metric and an affine connection satisfying certain conditions. By definition, a pair of a Riemannian metric and its Levi-Civita connection is a basic example. Accordingly, it is a natural problem to build corresponding inequalities for statistical submanifolds. In fact, many geometers recently give various inequalities for statistical submanifolds (for example, see [1, 3, 6, 7, 9] and references therein). In particular, A. Mihai and I. Mihai [7] obtained an inequality for statistical submanifolds corresponding to the one in terms of the $\delta_{(2,2)}$ -invariant, though they did not define the delta-invariant for a statistical manifold.

In this paper, we reformulate and generalize their inequality by defining delta-invariants for a statistical manifold. To define the delta-invariants, we use a new notion of sectional curvature for a statistical manifold, which is different from the ones defined from the so-called the statistical curvature tensor field S or the so-called the K-curvature tensor field [K, K] (see Section 2 and [4, 8])

©2022 Korean Mathematical Society

Received May 21, 2021; Accepted October 14, 2021.

²⁰¹⁰ Mathematics Subject Classification. Primary 53B25, 53C15.

Key words and phrases. Statistical manifold, statistical submanifold, sectional curvature, $\delta\text{-invariant}.$

for sectional curvatures of statistical manifolds). We can define another deltainvariant by using each of those sectional curvatures for a statistical manifold. However, our delta-invariant δ^U is suitable for obtaining the relation between the sum of the squared mean curvature and the squared dual mean curvature. In this paper, we have:

Theorem 1.1. Let \widetilde{M} be an (m + p)-dimensional statistical manifold of constant U sectional curvature $\widetilde{\kappa}$. Let (M, ∇, g) be an m-dimensional statistical submanifold in \widetilde{M} with the mean curvature vector field H and the dual mean curvature vector field H^* . Then the following inequality holds at each point of M:

$$||H||^{2} + ||H^{*}||^{2} \ge 2c(m_{1}, \dots, m_{k})^{-1} \{\delta^{U}_{(m_{1},\dots,m_{k})} - b(m_{1},\dots,m_{k})\widetilde{\kappa}\},\$$

where $\delta_{(m_1,\ldots,m_k)}^U$ is the delta-invariant of (∇, g) for U of type (m_1,\ldots,m_k) , and $b(m_1,\ldots,m_k)$, $c(m_1,\ldots,m_k)$ are positive constants defined in Definition 3.2.

The precise statement will be given as Proposition 3.4 and Theorem 3.6, which will be presented in the style same to [2]. The statistical submanifolds characterized by the equality will be stated there. The definitions concerning U are presented in Section 2. For example, a Hessian manifold of constant Hessian curvature is of constant U sectional curvature. If \widetilde{M} is such a manifold and if k = 2 and $m_1 = m_2 = 2$, then the theorem is reduced to the inequality in [7]. If \widetilde{M} is a Riemannian manifold, that is, if the considering affine connection coincides with the Levi-Civita connection, then the theorem is reduced to the inequality in [2]. A key of the proof is the algebraic identity (3.6), which seems easier to understand than the proof of the known Riemannian version. As an application, we have the non-existence of doubly minimal statistical submanifolds in statistical manifolds of non-positive U sectional curvature (Corollary 4.4).

2. Curvatures for statistical structures

Throughout this paper, M denotes a smooth manifold of dimension $m \geq 2$, and all the objects are assumed to be smooth. $\Gamma(E)$ denotes the set of sections of a vector bundle $E \to M$. For example, $\Gamma(TM^{(p,q)})$ means the set of all the tensor fields on M of type (p,q).

Let ∇ be an affine connection on M, and $g \in \Gamma(TM^{(0,2)})$ a Riemannian metric. We denote the Levi-Civita connection of g by ∇^{g} .

We will start with the review of statistical structures.

Definition 2.1. A pair (∇, g) is called a *statistical structure* on M if ∇ is of torsion free, and the Codazzi equation

$$(\nabla_X g)(Y, Z) = (\nabla_Y g)(X, Z)$$

holds for any $X, Y, Z \in \Gamma(TM)$.

Remark 2.2. For an affine connection ∇ on a Riemannian manifold (M, g), define ∇^* by the formula

(2.1)
$$Xg(Y,Z) = g(\nabla_X Y,Z) + g(Y,\nabla_X^* Z)$$

for any $X, Y, Z \in \Gamma(TM)$. Then ∇^* is an affine connection on M which is called the *dual* connection of ∇ with respect to g. Moreover, if (∇, g) is a statistical structure, then (∇^*, g) is also a statistical structure and $\nabla^g = \frac{1}{2}(\nabla + \nabla^*)$ as well.

Remark 2.3. For a statistical structure (∇, g) , we set

(2.2)
$$K_X Y = \nabla_X Y - \nabla_X^g Y$$

for any $X, Y \in \Gamma(TM)$. Then $K \in \Gamma(TM^{(1,2)})$ satisfies

(2.3)
$$K_X Y = K_Y X, \quad g(K_X Y, Z) = g(Y, K_X Z).$$

Conversely, for a Riemannian metric g if a given $K \in \Gamma(TM^{(1,2)})$ satisfies (2.3), then a pair $(\nabla = \nabla^g + K, g)$ becomes a statistical structure.

Besides, we have $K = \nabla^g - \nabla^* = \frac{1}{2}(\nabla - \nabla^*)$. We often denote $K_X Y$ by K(X, Y) as well.

Definition 2.4. Let (∇, g) be a statistical structure on M. We denote the curvature tensor field of ∇ by R^{∇} or R for short, and denote R^{∇^*} by R^* , R^{∇^g} by R^g in the similar fashion.

(1) We define

$$S(X,Y)Z = \frac{1}{2} \{ R(X,Y)Z + R^*(X,Y)Z \}$$

for $X, Y, Z \in \Gamma(TM)$, and call $S \in \Gamma(TM^{(1,3)})$ the statistical curvature tensor field of (∇, g) .

(2) Let $\{e_1, \ldots, e_m\}$ be an orthonormal basis of $T_x M$. For a 2-dimensional subspace $e_i \wedge e_j$, $1 \leq i < j \leq m$, spanned by $e_i, e_j \in T_x M$,

$$\mathcal{K}^S(e_i \wedge e_j) = g(S(e_i, e_j)e_j, e_i)$$

is called the *statistical sectional curvature* of (∇, g) for a plane $e_i \wedge e_j$, which is denoted by $\mathcal{K}(e_i \wedge e_j)$ for short. We remark that $\mathcal{K}(\Pi)$ for a 2-dimensional subspace Π of $T_x M$ is well defined (see [4]). We denote by \mathcal{K}^g the sectional curvature of g, which is given by using \mathbb{R}^g instead of S.

(3) We define a global scalar field

$$\rho = \sum_{1 \le i,j \le m} g(S(e_i, e_j)e_j, e_i) = 2 \sum_{1 \le i < j \le m} \mathcal{K}(e_i \land e_j),$$

and call ρ the statistical scalar curvature of (∇, g) . The scalar curvature of g is written by $\rho^g = 2 \sum_{1 \le i < j \le m} \mathcal{K}^g(e_i \land e_j)$.

Remark 2.5. For a statistical structure (∇, g) , the following holds:

$$S(X,Y)Z = R^g(X,Y)Z + [K_X,K_Y]Z$$

for $X, Y, Z \in \Gamma(TM)$. If K = 0, that is, if ∇ is the Levi-Civita connection of g, then we have $S = R^g$, and so $\mathcal{K} = \mathcal{K}^g$, $\rho = \rho^g$.

Definition 2.6. Let (∇, g) be a statistical structure on M. We set $U \in \Gamma(TM^{(1,3)})$ as

$$U(X,Y)Z = R^g(X,Y)Z - [K_X, K_Y]Z$$
$$= 2R^g(X,Y)Z - S(X,Y)Z$$

for $X, Y, Z \in \Gamma(TM)$. As \mathcal{K}^S is well defined, we can define the *U* sectional curvature $\mathcal{K}^U(e_i \wedge e_j)$ of (∇, g) for a plane $e_i \wedge e_j$ of $T_x M$:

$$\mathcal{K}^U(e_i \wedge e_j) = g(U(e_i, e_j)e_j, e_i),$$

and the U scalar curvature:

$$\rho^U = 2 \sum_{1 \le i < j \le m} \mathcal{K}^U(e_i \land e_j)$$
$$= 2\rho^g - \rho.$$

Remark that if K = 0, then $U = R^g$, and so $\mathcal{K}^U = \mathcal{K}^g$, $\rho^U = \rho^g$. We also remark that an *m*-dimensional Hessian manifold (M, ∇, g) of constant Hessian curvature κ is of constant U sectional curvature $-\kappa/2$, particularly, $\rho^U = -\kappa m(m-1)/4$.

For integers $m \geq 3$, $k \geq 1$, let us denote by $\mathcal{S}(m,k)$ the set consisting of unordered k-tuples (m_1, \ldots, m_k) of integers which satisfies

(2.4)
$$2 \le m_q < m \text{ for } q = 1, \dots, k, \quad m \ge l_k,$$

where $l_k = m_1 + \cdots + m_k$.

Definition 2.7. Let (M, ∇, g) be a statistical manifold of dimension $m \ge 3$.

(1) Let L be a subspace of $T_x M$ of dimension $l \ge 2$ and $\{e_1, \ldots, e_l\}$ an orthonormal basis of L. We denote

$$\rho^U(L) = 2 \sum_{1 \le i < j \le l} \mathcal{K}^U(e_i \land e_j).$$

Remark that $\rho^U(T_x M) = \rho^U(x)$.

(2) For $(m_1, \ldots, m_k) \in \mathcal{S}(m, k)$, we define a function $\delta^U_{(m_1, \ldots, m_k)} : M \to \mathbb{R}$ by

(2.5)
$$\delta_{(m_1,\dots,m_k)}^U(x) = \frac{1}{2} \left[\rho^U(x) - \inf\left\{ \sum_{q=1}^k \rho^U(L_q) \mid L_1,\dots,L_k \right\} \right],$$

where L_1, \ldots, L_k run over all k mutually orthogonal subspaces of $T_x M$ with $\dim L_q = m_q, q = 1, \ldots, k$. We call $\delta^U_{(m_1,\ldots,m_k)}$ the *delta-invariant* of (∇, g) for U of type (m_1,\ldots,m_k) . Furthermore, we write $\delta^U_{(\emptyset)}(x) = \rho^U(x)/2$ for convenience sake.

Remark 2.8. For (M, ∇^g, g) , our $\delta^U_{(m_1,...,m_k)}$ coincides with $\delta_{(m_1,...,m_k)}$ defined by B.-Y. Chen for a Riemannian manifold (M, g). We put 1/2 on the right hand side of (2.5) because his scalar curvature is a half of ours.

3. Chen inequalities

We give an algebraic preliminary, which is a key lemma to prove our theorems.

Lemma 3.1. For $(m_1, \ldots, m_k) \in \mathcal{S}(m, k)$, set $l_0 = 0$ and $l_q = m_1 + \cdots + m_q$ for $q = 1, \ldots, k$. Suppose that $m \ge l_k + 1$. We have the following inequalities (3.1) and (3.3) for arbitrary $a_1, \ldots, a_m \in \mathbb{R}$:

(3.1)
$$(m - l_k - 1) \Big(\sum_{i=l_k+1}^m a_i \Big)^2 \ge 2(m - l_k) \sum_{l_k+1 \le i < j \le m} a_i a_j.$$

The equality holds if and only if

$$(3.2) a_{l_k+1} = \dots = a_m.$$

It also holds for $m \ge 2$ and k = 0.

(3.3)
$$(m+k-l_k-1)\left(\sum_{i=1}^m a_i\right)^2$$

$$\geq 2(m+k-l_k) \Big(\sum_{1 \leq i < j \leq m} a_i a_j - \sum_{q=1}^k \sum_{l_{q-1}+1 \leq i < j \leq l_q} a_i a_j \Big).$$

The equality holds if and only if

(3.4)
$$A_1 = \dots = A_k = a_{l_k+1} = \dots = a_m,$$

where $A_q = a_{l_{q-1}+1} + \dots + a_{l_q}$.

Proof. These are obtained directly from the following two identities:

(3.5)
$$\sum_{l_k+1 \le i < j \le m} (a_i - a_j)^2$$
$$= (m - l_k - 1) \left(\sum_{i=l_k+1}^m a_i\right)^2 - 2(m - l_k) \sum_{l_k+1 \le i < j \le m} a_i a_j,$$

and

(3.6)
$$\sum_{l_k+1 \le i < j \le m} (a_i - a_j)^2 + \sum_{q=1}^k \sum_{i=l_k+1}^m (A_q - a_i)^2 + \sum_{1 \le q < r \le k} (A_q - A_r)^2$$
$$= (m + k - l_k - 1) \left(\sum_{i=1}^m a_i\right)^2$$

$$-2(m+k-l_k)\Big(\sum_{1\le i< j\le m} a_i a_j - \sum_{q=1}^k \sum_{l_{q-1}+1\le i< j\le l_q} a_i a_j\Big).$$

The proof of (3.5) is as follows: We calculate

$$\sum_{l_k+1 \le i < j \le m} (a_i - a_j)^2 = \frac{1}{2} \sum_{l_k+1 \le i, j \le m} (a_i - a_j)^2$$
$$= (m - l_k) \sum_{i=l_k+1}^m a_i^2 - \left(\sum_{i=l_k+1}^m a_i\right)^2,$$

and

$$\sum_{\substack{l_k+1 \le i < j \le m}} (a_i - a_j)^2$$

= $\frac{1}{2} \Big(\sum_{\substack{l_k+1 \le i, j \le m}} - \sum_{\substack{l_k+1 \le i = j \le m}} \Big) (a_i^2 + a_j^2) - 2 \sum_{\substack{l_k+1 \le i < j \le m}} a_i a_j$
= $(m - l_k - 1) \sum_{i=l_k+1}^m a_i^2 - 2 \sum_{\substack{l_k+1 \le i < j \le m}} a_i a_j$.

Deleting the term $\sum a_i^2$ from these two identities implies (3.5). The proof of (3.6) is as follows: We have

$$\sum_{1 \le q < r \le k} A_q A_r + \sum_{q=1}^k A_q \sum_{i=l_k+1}^m a_i + \sum_{l_k+1 \le i < j \le m} a_i a_j$$
$$= \sum_{1 \le i < j \le m} a_i a_j - \sum_{q=1}^k \sum_{l_{q-1}+1 \le i < j \le l_q} a_i a_j,$$

which implies that

[the left-hand side of (3.6)]

$$\begin{split} &= \Big\{ (m - l_k - 1) \sum_{i=l_k+1}^m {a_i}^2 - 2 \sum_{l_k+1 \le i < j \le m} a_i a_j \Big\} \\ &+ \Big\{ (m - l_k) \sum_{q=1}^k A_q^2 + k \sum_{i=l_k+1}^m {a_i}^2 - 2 \sum_{q=1}^k A_q \sum_{i=l_k+1}^m a_i \Big\} \\ &+ \Big\{ (k - 1) \sum_{q=1}^k A_q^2 - 2 \sum_{1 \le q < r \le k} A_q A_r \Big\} \\ &= (m + k - l_k - 1) \Big(\sum_{q=1}^k A_q^2 + \sum_{i=l_k+1}^m a_i^2 \Big) \end{split}$$

$$-2\Big(\sum_{1\leq q< r\leq k} A_q A_r + \sum_{q=1}^k A_q \sum_{i=l_k+1}^m a_i + \sum_{l_k+1\leq i< j\leq m} a_i a_j\Big)$$

$$= (m+k-l_k-1)\Big\{\Big(\sum_{q=1}^k A_q\Big)^2 + \Big(\sum_{i=l_k+1}^m a_i\Big)^2\Big\}$$

$$-2(m+k-l_k)\Big(\sum_{1\leq q< r\leq k} A_q A_r + \sum_{l_k+1\leq i< j\leq m} a_i a_j\Big) - 2\sum_{q=1}^k A_q \sum_{i=l_k+1}^m a_i$$

$$= (m+k-l_k-1)\Big(\sum_{q=1}^k A_q + \sum_{i=l_k+1}^m a_i\Big)^2$$

$$-2(m+k-l_k)\Big(\sum_{1\leq q< r\leq k} A_q A_r + \sum_{q=1}^k A_q \sum_{i=l_k+1}^m a_i + \sum_{l_k+1\leq i< j\leq m} a_i a_j\Big)$$

$$= [\text{the right-hand side of (3.6)}].$$

Following [2], we adopt the symbols below for later use.

Definition 3.2. For $(m_1, \ldots, m_k) \in \mathcal{S}(m, k)$, we set the positive constants as follow:

(3.7)
$$b(m_1, \dots, m_k) = \frac{1}{2}m(m-1) - \frac{1}{2}\sum_{q=1}^k m_q(m_q-1),$$

(3.8)
$$c(m_1, \dots, m_k) = \frac{m^2}{2} \frac{m + k - \sum_{q=1}^k m_q - 1}{m + k - \sum_{q=1}^k m_q}$$
$$= \frac{m^2}{2} \frac{m + k - l_k - 1}{m + k - l_k},$$

and moreover,

(3.9)
$$b(\emptyset) = c(\emptyset) = \frac{1}{2}m(m-1).$$

Let $(\widetilde{M}, \widetilde{\nabla}, \widetilde{g})$ be a statistical manifold of dimension m + p. Let (M, ∇, g) be a statistical submanifold of $(\widetilde{M}, \widetilde{\nabla}, \widetilde{g})$. For detail, refer to [4,9] for example. By definition, we have $h, h^* \in \Gamma(T^{\perp}M \otimes TM^{(0,2)})$, $A, A^* \in \Gamma((T^{\perp}M)^* \otimes TM^{(1,1)})$ and connections D, D^* of the normal bundle $T^{\perp}M$ satisfying the Gauss and Weingarten formulas:

$$\begin{cases} \tilde{\nabla}_X Y = \nabla_X Y + h(X, Y), \\ \tilde{\nabla}_X \xi = -A_{\xi} X + D_X \xi, \end{cases} \begin{cases} \tilde{\nabla}_X^* Y = \nabla_X^* Y + h^*(X, Y), \\ \tilde{\nabla}_X^* \xi = -A_{\xi}^* X + D_X^* \xi \end{cases}$$

for $X, Y \in \Gamma(TM)$ and $\xi \in \Gamma(T^{\perp}M)$. We denote the mean curvature vector fields of M for $\widetilde{\nabla}$ and $\widetilde{\nabla}^*$, respectively, by

(3.10)
$$H = \frac{1}{m} \operatorname{tr}_g h, \quad H^* = \frac{1}{m} \operatorname{tr}_g h^*,$$

and write

$$||H||^2 = \widetilde{g}(H, H), ||H^*||^2 = \widetilde{g}(H^*, H^*).$$

The inclusion map $\iota: M \to \widetilde{M}$ can be considered as a *statistical immersion* of (M, ∇, g) into $(\widetilde{M}, \widetilde{\nabla}, \widetilde{g})$.

Definition 3.3. A statistical immersion is said to be *doubly totally-geodesic* if $h = h^* = 0$, and *doubly totally-umbilical* if $h = g \otimes H, h^* = g \otimes H^*$. Furthermore, a statistical immersion is said to be *doubly minimal* if $H = H^* = 0$.

A doubly totally-geodesic statistical submanifold is also called a *doubly auto*parallel statistical submanifold. Remark that a doubly minimal statistical immersion of (M, ∇, g) into $(\widetilde{M}, \widetilde{\nabla}, \widetilde{g})$ is an isometric minimal immersion of (M, g)into $(\widetilde{M}, \widetilde{g})$.

Our Gauss equations are the following:

$$\begin{split} \widetilde{g}(R(X,Y)Z,W) &= g(R(X,Y)Z,W) \\ &\quad - \widetilde{g}(h(Y,Z),h^*(X,W)) + \widetilde{g}(h(X,Z),h^*(Y,W)), \\ 2\widetilde{g}(\widetilde{S}(X,Y)Z,W) &= 2g(S(X,Y)Z,W) \\ &\quad - \widetilde{g}(h(Y,Z),h^*(X,W)) + \widetilde{g}(h(X,Z),h^*(Y,W)) \\ &\quad - \widetilde{g}(h^*(Y,Z),h(X,W)) + \widetilde{g}(h^*(X,Z),h(Y,W)), \\ 4\widetilde{g}(R^{\widetilde{g}}(X,Y)Z,W) &= 4g(R^g(X,Y)Z,W) \\ &\quad - \widetilde{g}(h(Y,Z) + h^*(Y,Z),h(X,W) + h^*(X,W)) \end{split}$$

 $+ \tilde{g}(h(X,Z) + h^*(X,Z), h(Y,W) + h^*(Y,W))$

for $X, Y, Z, W \in \Gamma(TM)$.

4

Proposition 3.4. Let (M, ∇, g) be an $m \geq 2$ -dimensional statistical submanifold in an (m + p)-dimensional statistical manifold $(\widetilde{M}, \widetilde{\nabla}, \widetilde{g})$ with the U sectional curvature $\mathcal{K}^{\widetilde{U}}$. Then

(3.11)
$$\delta_{(\emptyset)}^U \le b(\emptyset) \max \mathcal{K}^U + c(\emptyset) \left(\|H\|^2 + \|H^*\|^2 \right)/2,$$

where max $\mathcal{K}^{\widetilde{U}} = \max \left\{ \mathcal{K}^{\widetilde{U}}(\Pi) \mid \Pi : plane \text{ section of } TM \right\}.$

Suppose that $(\tilde{\nabla}, \tilde{g})$ is of constant U sectional curvature. The equality holds at $x \in M$ if and only if $h_x = g_x \otimes H_x$, $h_x^* = g_x \otimes H_x^*$.

Proof. Using an orthonormal frame $\{e_1, \ldots, e_m, \xi_1, \ldots, \xi_p\}$ adapted for M, we express

$$h(e_i, e_j) = \sum h_{ij}^{\alpha} \xi_{\alpha}, \quad h^*(e_i, e_j) = \sum h_{ij}^{*\alpha} \xi_{\alpha}.$$

As in the proof of Lemma 3.1 in [9], by the Gauss equations we have

$$2\sum_{1\leq i< j\leq m} \mathcal{K}^{U}(e_{i} \wedge e_{j})$$

$$= 2\sum_{1\leq i< j\leq m} (2\mathcal{K}^{g} - \mathcal{K})(e_{i} \wedge e_{j})$$

$$= 2\sum_{1\leq i< j\leq m} (2\mathcal{K}^{\widetilde{g}} - \widetilde{\mathcal{K}})(e_{i} \wedge e_{j})$$

$$+ \sum_{\alpha=1}^{p} \sum_{1\leq i< j\leq m} \left(h_{ii}^{\alpha}h_{jj}^{\alpha} + h_{ii}^{*\alpha}h_{jj}^{*\alpha} - (h_{ij}^{\alpha})^{2} - (h_{ij}^{*\alpha})^{2}\right)$$

$$\leq m(m-1)\max(2\mathcal{K}^{\widetilde{g}} - \widetilde{\mathcal{K}}) + \sum_{\alpha=1}^{p} \sum_{1\leq i< j\leq m} \left(h_{ii}^{\alpha}h_{jj}^{\alpha} + h_{ii}^{*\alpha}h_{jj}^{*\alpha}\right).$$

Considering h_{ii}^{α} and $h_{ii}^{*\alpha}$ as a_i in (3.1) with k = 0, respectively, we have

$$2\delta_{(\emptyset)}^{U} \le m(m-1) \Big\{ \max \mathcal{K}^{\widetilde{U}} + (\|H\|^2 + \|H^*\|^2)/2 \Big\}.$$

The latter part of the proposition is easy to obtain from (3.2).

Remark 3.5. In [9], we had the following inequality (Theorem 3.7):

(3.12)
$$\delta_{(\emptyset)}^{U} \le b(\emptyset) \max \mathcal{K}^{U} + (m^{3}/8) \left(\|H\|^{2} + \|H^{*}\|^{2} \right)/2,$$

which characterizes doubly totally-umbilical surfaces and doubly totally-geodesic submanifolds as the equality holding cases at every point. It is easy to see that (3.11) coincides (3.12) in the case where m = 2. The inequality (3.12) was obtained from the relation between the Ricci curvature and the squared mean curvatures.

Theorem 3.6. Let (M, ∇, g) be an $m(\geq 3)$ -dimensional statistical submanifold in an (m + p)-dimensional statistical manifold $(\widetilde{M}, \widetilde{\nabla}, \widetilde{g})$ with the U sectional curvature $\mathcal{K}^{\widetilde{U}}$. For $(m_1, \ldots, m_k) \in \mathcal{S}(m, k)$, we have

(3.13)
$$\delta^{U}_{(m_1,\dots,m_k)} \leq b(m_1,\dots,m_k) \max \mathcal{K}^{\tilde{U}} + c(m_1,\dots,m_k) (\|H\|^2 + \|H^*\|^2)/2,$$

where max $\mathcal{K}^{\widetilde{U}} = \max \left\{ \mathcal{K}^{\widetilde{U}}(\Pi) \mid \Pi : plane \text{ section of } TM \right\}.$

Suppose that $(\widetilde{\nabla}, \widetilde{g})$ is of constant U sectional curvature. The equality holds at $x \in M$ if and only if there exist mutually orthogonal subspaces L_1, \ldots, L_k of $T_x M$ with dim $L_q = m_q, q = 1, \ldots, k$, and adapted orthonormal basis satisfying

(3.14)
$$L_q = \operatorname{span}\{e_{l_{q-1}+1}, \dots, e_{l_q}\},\$$

(3.15)
$$\sum_{i=1}^{l_1} h_{ii}^{\alpha} = \dots = \sum_{i=l_{k-1}+1}^{l_k} h_{ii}^{\alpha} = h_{l_k+1\,l_k+1}^{\alpha} = \dots = h_{mm}^{\alpha},$$

(3.16)
$$\sum_{i=1}^{l_1} h_{ii}^{*\alpha} = \dots = \sum_{i=l_{k-1}+1}^{l_k} h_{ii}^{*\alpha} = h_{l_k+1}^{*\alpha} h_{l_k+1}^{*\alpha} = \dots = h_{mm}^{*\alpha},$$

(3.17)
$$\begin{aligned} h_{ij}^{\alpha} &= h_{ij}^{*\alpha} = 0 \quad for \quad i \leq l_q < l_q + 1 \leq j, \quad q = 1, \dots, k, \\ or \quad l_k + 1 \leq i < j \leq m. \end{aligned}$$

Proof. Let L_1, \ldots, L_k be mutually orthogonal subspaces of $T_x M$ with dim $L_q =$ $m_q, q = 1, \ldots, k$ and $\{e_{l_{q-1}+1}, \ldots, e_{l_q}\}$ an orthonormal basis of L_q . As in the proof of Proposition 3.4, by the Gauss equations we have

$$\begin{split} & 2\sum_{1 \leq i < j \leq m} \mathcal{K}^{U}(e_{i} \wedge e_{j}) - 2\sum_{q=1}^{k} \sum_{l_{q-1}+1 \leq i < j \leq l_{q}} \mathcal{K}^{U}(e_{i} \wedge e_{j}) \\ &= 2\sum_{1 \leq i < j \leq m} \mathcal{K}^{\tilde{U}}(e_{i} \wedge e_{j}) \\ &+ \sum_{\alpha=1}^{p} \sum_{1 \leq i < j \leq m} \left(h_{ii}^{\alpha}h_{jj}^{\alpha} + h_{ii}^{*\alpha}h_{jj}^{*\alpha} - (h_{ij}^{\alpha})^{2} - (h_{ij}^{*\alpha})^{2}\right) \\ &- 2\sum_{q=1}^{k} \sum_{l_{q-1}+1 \leq i < j \leq l_{q}} \mathcal{K}^{\tilde{U}}(e_{i} \wedge e_{j}) \\ &- \sum_{\alpha=1}^{p} \sum_{q=1}^{k} \sum_{l_{q-1}+1 \leq i < j \leq l_{q}} \left(h_{ii}^{\alpha}h_{jj}^{\alpha} + h_{ii}^{*\alpha}h_{jj}^{*\alpha} - (h_{ij}^{\alpha})^{2} - (h_{ij}^{*\alpha})^{2}\right) \\ &\leq 2b(m_{1}, \dots, m_{k}) \max \mathcal{K}^{\tilde{U}} \\ &+ \sum_{\alpha=1}^{p} \Big\{ \sum_{1 \leq i < j \leq m} \left(h_{ii}^{\alpha}h_{jj}^{\alpha} + h_{ii}^{*\alpha}h_{jj}^{*\alpha}\right) - \sum_{q=1}^{k} \sum_{l_{q-1}+1 \leq i < j \leq l_{q}} \left(h_{ii}^{\alpha}h_{jj}^{\alpha} + h_{ii}^{*\alpha}h_{jj}^{*\alpha}\right) \Big\}. \end{split}$$

In the case where
$$\mathcal{K}^U$$
 is constant, we remark that the equality holds if and only if (3.17) holds.

Considering h_{ii}^{α} and $h_{ii}^{*\alpha}$ as a_i in (3.3), respectively, we have

$$\rho^{U} - 2\sum_{q=1}^{\kappa} \sum_{l_{q-1}+1 \le i < j \le l_{q}} \mathcal{K}^{U}(e_{i} \land e_{j})$$

$$\leq 2b(m_{1}, \dots, m_{k}) \max \mathcal{K}^{\widetilde{U}} + c(m_{1}, \dots, m_{k}) (\|H\|^{2} + \|H^{*}\|^{2}).$$

The latter part of the proposition is easy to obtain from (3.4).

Corollary 3.7 ([2]). Let $(\widetilde{M}, \widetilde{g})$ be an (m+p)-dimensional Riemannian manifold of constant curvature \tilde{c} , and (M, g) an m-dimensional Riemannian submanifold with the mean curvature vector field \widehat{H} . For $(m_1, \ldots, m_k) \in \mathcal{S}(m, k)$, we have ~

(3.18)
$$\delta_{(m_1,\ldots,m_k)} \le b(m_1,\ldots,m_k)\widetilde{c} + c(m_1,\ldots,m_k) \|H\|^2.$$

Proof. In Theorem 3.6, consider the case where $\widetilde{\nabla} = \nabla^{\widetilde{g}}$. Remark that $\nabla = \nabla^{g}$ and $H = H^* = \widehat{H}$. Since $\mathcal{K}^{\widetilde{U}} = \widetilde{c}$, we have (3.18).

Corollary 3.8. Let (M, ∇, g) be an m-dimensional statistical submanifold in an (m + p)-dimensional Hessian manifold $(\widetilde{M}, \widetilde{\nabla}, \widetilde{g})$ of constant Hessian curvature κ . For $(m_1, \ldots, m_k) \in \mathcal{S}(m, k)$, we have

(3.19)
$$\delta^{U}_{(m_1,\dots,m_k)} \leq b(m_1,\dots,m_k)(-\kappa/2) + c(m_1,\dots,m_k) (\|H\|^2 + \|H^*\|^2)/2.$$

Proof. By definition, $R^{\widetilde{\nabla}} = 0$ and \widetilde{g} is of constant curvature $-\kappa/4$ (see [10]). Therefore, we have $\mathcal{K}^{\widetilde{U}} = -\kappa/2$. Theorem 3.6 implies (3.19).

In the case where k = 2 and $m_1 = m_2 = 2$, the inequality was essentially obtained by [7].

4. Examples

Example 4.1. The triple $(\widetilde{M}, \widetilde{\nabla}, \widetilde{g})$ defined below is an *n*-dimensional statistical manifold such that the U sectional curvature vanishes.

$$\dot{M} = (\mathbb{R}^+)^n = \left\{ y = (y^1, \dots, y^n) \in \mathbb{R}^n \mid y^1 > 0, \dots, y^n > 0 \right\}, \\
\widetilde{g} = \sum_{i=1}^n (dy^i)^2, \\
\widetilde{\nabla}_{\widetilde{\partial}_j} \widetilde{\partial}_i = \widetilde{K}(\widetilde{\partial}_j, \widetilde{\partial}_i) = -\delta_{ji}(y^i)^{-1} \widetilde{\partial}_i,$$

where $\tilde{\partial}_i = \partial/\partial y^i$. In fact, it is a Hessian manifold of constant Hessian curvature 0. For $(n_1, \ldots, n_k) \in \mathcal{S}(n, k)$, we have $\delta_{(n_1, \ldots, n_k)}^{\tilde{U}} = 0$.

Example 4.2. For $\alpha \in \mathbb{R}$, the triple $(\widetilde{M}, \widetilde{\nabla}^{(\alpha)}, \widetilde{g})$ defined below is an *n*-dimensional statistical manifold such that the *U* sectional curvature is negative constant $-(1 + \alpha^2)$.

$$\widetilde{M} = \mathbb{H}^n = \left\{ y = (y^1, \dots, y^{n-1}, y^n) \in \mathbb{R}^n \mid y^n > 0 \right\},\\ \widetilde{g} = (y^n)^{-2} \sum_{A=1}^n (dy^A)^2,\\ \widetilde{K}(\widetilde{\partial}_i, \widetilde{\partial}_j) = \delta_{ij}(y^n)^{-1} \widetilde{\partial}_n,\\ \widetilde{K}(\widetilde{\partial}_i, \widetilde{\partial}_n) = \widetilde{K}(\widetilde{\partial}_n, \widetilde{\partial}_i) = (y^n)^{-1} \widetilde{\partial}_i,\\ \widetilde{K}(\widetilde{\partial}_n, \widetilde{\partial}_n) = 2(y^n)^{-1} \widetilde{\partial}_n,$$

and $\widetilde{\nabla}^{(\alpha)} = \nabla^{\widetilde{g}} + \alpha \widetilde{K}$ as in Remark 2.3, where $\widetilde{\partial}_A = \partial/\partial y^A$, $A = 1, \ldots, n$ and $i, j = 1, \ldots, n-1$. Then we have

$$[K, K](X, Y)Z = \tilde{g}(Y, Z)X - \tilde{g}(X, Z)Y,$$

$$U(X,Y)Z = -(1+\alpha^2)\{\widetilde{g}(Y,Z)X - \widetilde{g}(X,Z)Y\}$$

for $X, Y, Z \in \Gamma(T\widetilde{M})$.

=

For $(n_1,\ldots,n_k) \in \mathcal{S}(n,k)$, we have $\delta^{\widetilde{U}}_{(n_1,\ldots,n_k)} = -b(n_1,\ldots,n_k)(1+\alpha^2).$

Remark that $(\widetilde{M}, \widetilde{\nabla}^{(1)}, \widetilde{g})$ is a Hessian manifold of constant Hessian curvature 4.

Example 4.3 (Example 2.15 in [5]). Let $(\mathbb{S}^{2n+1}, g, \phi, \xi)$ be a unit hypersphere in the complex Euclidean space with the standard Sasakian structure. Set $K(X,Y) = g(X,\xi)g(Y,\xi)\xi$ for any $X,Y \in \Gamma(T\mathbb{S}^{2n+1})$, and $\nabla = \nabla^g + K$. Then the statistical manifold $(\mathbb{S}^{2n+1}, \nabla, g)$ is of constant U sectional curvature one. In fact, we have $U = R^g$. For $(m_1, \ldots, m_k) \in \mathcal{S}(2n+1,k)$, we have $\delta^U_{(m_1,\ldots,m_k)} = b(m_1,\ldots,m_k)$.

As an application of Proposition 3.4 and Theorem 3.6, we have the following non-existence of doubly minimal statistical immersions:

Corollary 4.4. Let \widetilde{M} be a statistical manifold of non-positive U sectional curvature. Let M be an m-dimensional statistical manifold. Suppose that there exist non-negative integer k, $(m_1, \ldots, m_k) \in \mathcal{S}(m, k)$ and a point $x \in M$ such that $\delta^U_{(m_1,\ldots,m_k)}(x)$ is positive. Then M does not admit doubly minimal statistical immersion into \widetilde{M} for any codimension, in particular, \widetilde{M} as in Examples 4.1 and 4.2.

We will give basic properties and examples of doubly minimal statistical immersions in another paper.

Examples of doubly totally-umbilical statistical submanifolds, which are submanifolds satisfying the equality in Proposition 3.4, are given in [9]:

Example 4.5. Let $(\widetilde{M}, \widetilde{\nabla}^{(\alpha)}, \widetilde{g})$ be a statistical manifold of dimension n = m + p in Example 4.2.

(1) For $(a^1, \ldots, a^p) \in \mathbb{R}^p$, the inclusion map $\iota : \mathbb{H}^m \ni (x^1, \ldots, x^{m-1}, x^m) \mapsto (a^1, \ldots, a^p, x^1, \ldots, x^{m-1}, x^m) \in \mathbb{H}^n$ is doubly totally-geodesic. In fact, we have $h = h^* = 0$, and the induced statistical structure (∇, g) on \mathbb{H}^m is same as in Example 4.2. Accordingly, we have

$$\delta^{U}_{(m_1,\dots,m_k)} = -b(m_1,\dots,m_k)(1+\alpha^2),$$

$$b(m_1,\dots,m_k) \max \mathcal{K}^{\widetilde{U}} + c(m_1,\dots,m_k)(||H||^2 + ||H^*||^2)/2$$

$$= -b(m_1,\dots,m_k)(1+\alpha^2).$$

(2) For $(a^1, \ldots, a^{p-1}, a^p) \in \mathbb{R}^{p-1} \times \mathbb{R}^+$, the inclusion map

$$\iota: \mathbb{R}^m \ni (x^1, \dots, x^m) \mapsto (x^1, \dots, x^m, a^1, \dots, a^{p-1}, a^p) \in \mathbb{H}^n$$

is doubly totally-umbilical. In fact, the induced statistical structure (∇, g) on \mathbb{R}^m is given as

$$g = (a^p)^{-2} \sum_{j=1}^m (dx^j)^2, \qquad \nabla_{\partial_j} \partial_i = \nabla^g_{\partial_j} \partial_i = 0,$$

and we have

$$\begin{split} h &= (1+\alpha)a^p g \otimes (\partial/\partial y^n) = g \otimes H, \\ h^* &= (1-\alpha)a^p g \otimes (\partial/\partial y^n) = g \otimes H^*. \end{split}$$

Accordingly, we have

$$\delta^{U}_{(m_1,\dots,m_k)} = 0,$$

$$b(m_1,\dots,m_k) \max \mathcal{K}^{\widetilde{U}} + c(m_1,\dots,m_k) (||H||^2 + ||H^*||^2)/2$$

$$= (1 + \alpha^2) \{ c(m_1,\dots,m_k) - b(m_1,\dots,m_k) \}.$$

Remark that $c(m_1, \ldots, m_k) - b(m_1, \ldots, m_k) \ge 0$ and the equality holds if and only if k = 0. Therefore, the above inclusion map ι satisfies the equality in (3.11), but does not in (3.13).

Acknowledgments. The authors wish to express their gratitude to Yukihiko Okuyama and Kimitake Sato for their kind help.

References

- M. E. Aydin, A. Mihai, and I. Mihai, Some inequalities on submanifolds in statistical manifolds of constant curvature, Filomat 29 (2015), no. 3, 465-476. https://doi.org/ 10.2298/FIL1503465A
- [2] B.-Y. Chen, A general optimal inequality for arbitrary Riemannian submanifolds, JI-PAM. J. Inequal. Pure Appl. Math. 6 (2005), no. 3, Article 77, 10 pp.
- [3] B.-Y. Chen, A. Mihai, and I. Mihai, A Chen first inequality for statistical submanifolds in Hessian manifolds of constant Hessian curvature, Results Math. 74 (2019), no. 4, Paper No. 165, 11 pp. https://doi.org/10.1007/s00025-019-1091-y
- [4] H. Furuhata and I. Hasegawa, Submanifold theory in holomorphic statistical manifolds, in Geometry of Cauchy-Riemann submanifolds, 179–215, Springer, Singapore, 2016.
- H. Furuhata, I. Hasegawa, Y. Okuyama, K. Sato, and M. H. Shahid, Sasakian statistical manifolds, J. Geom. Phys. 117 (2017), 179–186. https://doi.org/10.1016/j. geomphys.2017.03.010
- [6] C. W. Lee, D. W. Yoon, and J. W. Lee, A pinching theorem for statistical manifolds with Casorati curvatures, J. Nonlinear Sci. Appl. 10 (2017), no. 9, 4908–4914. https: //doi.org/10.22436/jnsa.010.09.31
- [7] A. Mihai and I. Mihai, The δ(2,2)-invariant on statistical submanifolds in Hessian manifolds of constant Hessian curvature, Entropy 22 (2020), no. 2, Paper No. 164, 8 pp. https://doi.org/10.3390/e22020164
- [8] B. Opozda, A sectional curvature for statistical structures, Linear Algebra Appl. 497 (2016), 134–161. https://doi.org/10.1016/j.laa.2016.02.021
- [9] N. Satoh, H. Furuhata, I. Hasegawa, T. Nakane, Y. Okuyama, K. Sato, M. H. Shahid, and A. N. Siddiqui, *Statistical submanifolds from a viewpoint of the Euler inequality*, Inf. Geom. 4 (2021), no. 1, 189–213. https://doi.org/10.1007/s41884-020-00032-4

H. FURUHATA, I. HASEGAWA, AND N. SATOH

[10] H. Shima, The geometry of Hessian structures, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2007. https://doi.org/10.1142/9789812707536

HITOSHI FURUHATA DEPARTMENT OF MATHEMATICS HOKKAIDO UNIVERSITY SAPPORO 060-0810, JAPAN Email address: furuhata@math.sci.hokudai.ac.jp

IZUMI HASEGAWA HOKKAIDO UNIVERSITY OF EDUCATION SAPPORO 002-8501, JAPAN Email address: hase_izu@kuc.biglobe.ne.jp

NAOTO SATOH NATIONAL INSTITUTE OF TECHNOLOGY, ASAHIKAWA COLLEGE ASAHIKAWA 071-8142, JAPAN *Email address*: n_satoh@asahikawa-nct.ac.jp