• Title/Summary/Keyword: Chemistry domain

Search Result 249, Processing Time 0.027 seconds

Ferromagnetic Domain Behaviors in Mn doped ZnO Film

  • Soundararajan, Devaraj;Santoyo-Salazar, Jaime;Ko, Jang-Myoun;Kim, Ki-Hyeon
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.216-219
    • /
    • 2011
  • Mn doped ZnO films were prepared on Si (100) substrates using sol-gel method. The prepared films were annealed at $550^{\circ}C$ for decomposition and oxidation of the precursors. XRD analysis revealed the presence of ZnMnO hexagonal wurtzite phase along with the presence of small quantity of $ZnMn_2O_3$ secondary phase and poor crystalline nature. The 2D, 3D views of magnetic domains and domain profiles were obtained using magnetic force microscopy at room temperature. Rectangular shaped domains with an average size of 4.16 nm were observed. Magnetic moment measurement as a function of magnetic field was measured using superconducting quantum interference device (SQUID) magnetometry at room temperature. The result showed the ferromagnetic hysteresis loop with a curie temperature higher than 300 K.

Microwave Dielectric Characterization of Binary Mixtures of 3-Nitrotoluene with Dimethylacetamide, Dimethylformamide and Dimethylsulphoxide

  • Chaudhari, Ajay;Chaudhari, H.C.;Mehrotra, S.C.
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.9
    • /
    • pp.1403-1407
    • /
    • 2004
  • Dielectric relaxation measurements on 3-nitrotoluene (3-NT) mixture of dimethylacetamide (DMA), dimethylformamide (DMF) and dimethysulphoxide (DMSO) have been carried out across the entire concentration range using Time domain reflectometry technique at 15, 25, 35 and $45^{\circ}C$ over the frequency range from 10 MHz to 20 GHz. For all the mixtures, only one dielectric loss peak was observed in this frequency range and the relaxation in these mixtures can be well described by a single relaxation time using Debye model. Bilinear calibration method is used to obtain complex permittivity ${\varepsilon}^{*}({\omega})$ from complex reflection coefficient ${\rho}^{*}({\omega})$ over frequency range 10 MHz to 20 GHz. The excess permittivity, excess inverse relaxation time, Kirkwood correlation factor, molar energy of activation are also calculated for these mixtures to study the solute-solvent interaction.

Behavior of Poisson Bracket Mapping Equation in Studying Excitation Energy Transfer Dynamics of Cryptophyte Phycocyanin 645 Complex

  • Lee, Weon-Gyu;Kelly, Aaron;Rhee, Young-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.933-940
    • /
    • 2012
  • Recently, it has been shown that quantum coherence appears in energy transfers of various photosynthetic lightharvesting complexes at from cryogenic to even room temperatures. Because the photosynthetic systems are inherently complex, these findings have subsequently interested many researchers in the field of both experiment and theory. From the theoretical part, simplified dynamics or semiclassical approaches have been widely used. In these approaches, the quantum-classical Liouville equation (QCLE) is the fundamental starting point. Toward the semiclassical scheme, approximations are needed to simplify the equations of motion of various degrees of freedom. Here, we have adopted the Poisson bracket mapping equation (PBME) as an approximate form of QCLE and applied it to find the time evolution of the excitation in a photosynthetic complex from marine algae. The benefit of using PBME is its similarity to conventional Hamiltonian dynamics. Through this, we confirmed the coherent population transfer behaviors in short time domain as previously reported with a more accurate but more time-consuming iterative linearized density matrix approach. However, we find that the site populations do not behave according to the Boltzmann law in the long time limit. We also test the effect of adding spurious high frequency vibrations to the spectral density of the bath, and find that their existence does not alter the dynamics to any significant extent as long as the associated reorganization energy is changed not too drastically. This suggests that adopting classical trajectory based ensembles in semiclassical simulations should not influence the coherence dynamics in any practical manner, even though the classical trajectories often yield spurious high frequency vibrational features in the spectral density.

Characterization of the Putative Membrane Fusion Peptides in the Envelope Proteins of Human Hepatitis B Virus

  • Kang, Ha-Tan;Yu, Yeon-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.10
    • /
    • pp.1756-1762
    • /
    • 2007
  • Envelope proteins of virus contain a segment of hydrophobic amino acids, called as fusion peptide, which triggers membrane fusion by insertion into membrane and perturbation of lipid bilayer structure. Potential fusion peptide sequences have been identified in the middle of L or M proteins or at the N-terminus of S protein in the envelope of human hepatitis B virus (HBV). Two 16-mer peptides representing the N-terminal fusion peptide of the S protein and the internal fusion peptide in L protein were synthesized, and their membrane disrupting activities were characterized. The internal fusion peptide in L protein showed higher activity of liposome leakage and hemolysis of human red blood cells than the N-terminal fusion peptide of S protein. Also, the membrane disrupting activity of the extracellular domain of L protein significantly increased when the internal fusion peptide region was exposed to N-terminus by the treatment of V8 protease. These results indicate that the internal fusion peptide region of L protein could activate membrane fusion when it is exposed by proteolysis.

Expression and Preparation of Periostin FAS1 Domains for NMR Structure Determination

  • Yun, Hyosuk;Kim, Jae Il;Lee, Chul Won
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.20 no.1
    • /
    • pp.17-21
    • /
    • 2016
  • Periostin, a component of extracellular matrix (ECM) protein, is produced and secreted by the fibroblasts that are involved in chronic allergic inflammation diseases and various types of human cancers. Periostin protein is composed of multiple domains including four FAS1 domains which play important roles in cell adhesion and tumor metastasis by interacting with integrins. In spite of their important biological role, the structural information of periosin FAS1 domains was not revealed yet. Recently we systemically prepared various constructs of the FAS1 domains and tried to express them in E. coli. Of them, only single FAS1-II and -IV domains were highly soluble. Circular dichroism (CD) and nuclear magnetic resonance (NMR) studies revealed that the FAS1-IV domain might be suitable for three-dimensional structure determination using NMR spectroscopy.

Photophysical Model of 10-Hydroxybenzo[h]quinoline: Internal Conversion and Excited State Intramolecular Proton Transfer

  • Lee, Junghwa;Joo, Taiha
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.881-885
    • /
    • 2014
  • Photophysics of 10-hydroxybenzo[h]quinoline (HBQ) has been in controversy, in particular, on the nature of the electronic states before and after the excited state intramolecular proton transfer (ESIPT), even though the dynamics and mechanism of the ESIPT have been well established. We report highly time resolved fluorescence spectra over the full emission frequency regions of the enol and keto isomers and the anisotropy in time domain to determine the accurate rates of the population decay, spectral relaxation and anisotropy decay of the keto isomer. We have shown that the ~300 fs component observed frequently in ESIPT dynamics arises from the $S_2{\rightarrow}S_1$ internal conversion in the reaction product keto isomer and that the ESIPT occurs from the enol isomer in $S_1$ state to the keto isomer in $S_2$ state.

Mutation Effects on FAS1 Domain 4 Related to Protein Aggregation by Molecular Dynamics Simulations and Solvation Free Energy Analysis

  • Cho, Sunhee;Ham, Sihyun
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.70-75
    • /
    • 2015
  • Fasciclin 1 (FAS1) is an extracellular protein whose aggregation in cornea leads to visual impairment. While a number of FAS1 mutants have been studied that exhibit enhanced/decreased aggregation propensity, no structural information has been provided so far that is associated with distinct aggregation potential. In this study, we have investigated the structural and thermodynamic characteristics of the wild-type FAS1 and its two mutants, R555Q and R555W, by using molecular dynamics simulations and three-dimensional reference interaction site model (3D-RISM) theory. We find that the hydrophobic solvent accessible surface area increases due to hydrophobic core repacking in the C-terminus caused by the mutation. We also find that the solvation free energy of the mutants increases due to the enhanced non-native H-bonding. These structural and thermodynamic changes upon mutation contribute to understand the aggregation of these mutants.

  • PDF

Large Solvent and Noise Peak Suppression by Combined SVD-Harr Wavelet Transform

  • Kim, Dae-Sung;Kim, Dai-Gyoung;Lee, Yong-Woo;Won, Ho-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.7
    • /
    • pp.971-974
    • /
    • 2003
  • By utilizing singular value decomposition (SVD) and shift averaged Harr wavelet transform (WT) with a set of Daubechies wavelet coefficients (1/2, -1/2), a method that can simultaneously eliminate an unwanted large solvent peak and noise peaks from NMR data has been developed. Noise elimination was accomplished by shift-averaging the time domain NMR data after a large solvent peak was suppressed by SVD. The algorithms took advantage of the WT, giving excellent results for the noise elimination in the Gaussian type NMR spectral lines of NMR data pretreated with SVD, providing superb results in the adjustment of phase and magnitude of the spectrum. SVD and shift averaged Haar wavelet methods were quantitatively evaluated in terms of threshold values and signal to noise (S/N) ratio values.

Engineering and Application of Zinc Finger Proteins and TALEs for Biomedical Research

  • Kim, Moon-Soo;Kini, Anu Ganesh
    • Molecules and Cells
    • /
    • v.40 no.8
    • /
    • pp.533-541
    • /
    • 2017
  • Engineered DNA-binding domains provide a powerful technology for numerous biomedical studies due to their ability to recognize specific DNA sequences. Zinc fingers (ZF) are one of the most common DNA-binding domains and have been extensively studied for a variety of applications, such as gene regulation, genome engineering and diagnostics. Another novel DNA-binding domain known as a transcriptional activator-like effector (TALE) has been more recently discovered, which has a previously undescribed DNA-binding mode. Due to their modular architecture and flexibility, TALEs have been rapidly developed into artificial gene targeting reagents. Here, we describe the methods used to design these DNA-binding proteins and their key applications in biomedical research.