DOI QR코드

DOI QR Code

Microwave Dielectric Characterization of Binary Mixtures of 3-Nitrotoluene with Dimethylacetamide, Dimethylformamide and Dimethylsulphoxide

  • Chaudhari, Ajay (Dept. of Chemistry, National Chung-Cheng University) ;
  • Chaudhari, H.C. (Department of Computer Science and Information Technology, Dr. B. A. M. University) ;
  • Mehrotra, S.C. (Department of Computer Science and Information Technology, Dr. B. A. M. University)
  • Published : 2004.09.20

Abstract

Dielectric relaxation measurements on 3-nitrotoluene (3-NT) mixture of dimethylacetamide (DMA), dimethylformamide (DMF) and dimethysulphoxide (DMSO) have been carried out across the entire concentration range using Time domain reflectometry technique at 15, 25, 35 and $45^{\circ}C$ over the frequency range from 10 MHz to 20 GHz. For all the mixtures, only one dielectric loss peak was observed in this frequency range and the relaxation in these mixtures can be well described by a single relaxation time using Debye model. Bilinear calibration method is used to obtain complex permittivity ${\varepsilon}^{*}({\omega})$ from complex reflection coefficient ${\rho}^{*}({\omega})$ over frequency range 10 MHz to 20 GHz. The excess permittivity, excess inverse relaxation time, Kirkwood correlation factor, molar energy of activation are also calculated for these mixtures to study the solute-solvent interaction.

Keywords

References

  1. Gabriel, C.; Gabriel, S.; Grant, E. H.; Halstead, B. S. J.; Mingos,D. M. P. Chem. Soc. Rev. 1998, 27, 213. https://doi.org/10.1039/a827213z
  2. Kuang, W.; Nelson, S. O. J. Microw. Pow. and EM Energy 1997,32, 114.
  3. Fattepur, R. H.; Hosamani, M. T.; Deshpande, D. K.; Mehrotra, S.C. J. Chem. Phys. 1994, 101, 9956. https://doi.org/10.1063/1.467897
  4. Kumbharkhane, A. C.; Puranik, S. M.; Mehrotra, S. C. J. Sol.Chem. 1993, 22, 219. https://doi.org/10.1007/BF00649245
  5. Firman, P.; Marchetti, M.; Eyrin, M.; Xu, E. M.; Petrucci, S. J.Phys. Chem. 1991, 95, 7055. https://doi.org/10.1021/j100171a061
  6. Patil, S. P.; Chaudhari, A. S.; Lokhande, M. P.; Lande, M. K.;Shankarwar, A. G.; Helambe, S. N.; Arbad, B. R.; Mehrotra, S. C.J. Chem. Engn. Data 1999, 44, 875. https://doi.org/10.1021/je980250j
  7. Bao, J. Z.; Swicord, M. L.; Davies, C. C. J. Chem. Phys. 1996,104, 4441. https://doi.org/10.1063/1.471197
  8. Suryavanshi, B. M.; Mehrotra, S. C. Ind. J. Pure & Appl. Phys.1991, 29, 482.
  9. Chaudhari, A.; Chaudhari, H.; Mehrotra, S. C. J. Chin. Chem. Soc.2002, 49, 489.
  10. Chaudhari, A.; Chaudhari, H.; Mehrotra, S. C. Fluid PhaseEquilibr. 2002, 201, 107. https://doi.org/10.1016/S0378-3812(02)00067-5
  11. Pawar, V. P.; Mehrotra, S. C. J. Mol. Liq. 2002, 95, 63. https://doi.org/10.1016/S0167-7322(01)00282-3
  12. Pawar, V. P.; Raju, G. S.; Mehrotra, S. C. Pramana-J. of Phys.2002, 592, 693.
  13. Ahire, S.; Chaudhari, A.; Lokhande, M. P.; Mehrotra, S. C. J. Sol.Chem. 1998, 27, 993. https://doi.org/10.1023/A:1022648204099
  14. Bertolini, D.; Cassettari, M.; Ferrari, C.; Tombari, E. J. Phys.Chem. 1998, 108, 6416. https://doi.org/10.1063/1.476048
  15. Puranik, S. M.; Kumbharkhane, A. C.; Mehrotra, S. C. Ind. J.Chem. 1993, 32A, 613.
  16. Barthel, J.; Bachhuber, K.; Buchner, R. Z. Naturforsch 1995, 50,65.
  17. Chaudhari, A.; More, N. M.; Mehrotra, S. C. Bull. Korean Chem.Soc. 2001, 22, 357.
  18. Chaudhari, A.; Ahire, S.; Mehrotra, S. C. J. Mol. Liq. 2001, 94,17. https://doi.org/10.1016/S0167-7322(01)00238-0
  19. Lou, J.; Hatton, T. A.; Laibinis, P. E. J. Phys. Chem. A 1997, 101,5262. https://doi.org/10.1021/jp970731u
  20. Lou, J.; Hatton, T. A.; Laibinis, P.E. J. Phys. Chem. A 1997, 101,9892. https://doi.org/10.1021/jp972785+
  21. Mashimo, S.; Kuwabara, S.; Yagihara, S.; Higasi, K. J. Chem.Phys. 1989, 90, 3292. https://doi.org/10.1063/1.455883
  22. Cole, R. H.; Berbarian, J. G.; Mashimo, S.; Chryssikos, G.; Burns,A.; Tombari, E. J. Appl. Phys. 1989, 66, 793. https://doi.org/10.1063/1.343499
  23. Puranik, S. M.; Kumbharkhane, A. C.; Mehrotra, S. C. J. Microw.Pow. and EM Energy 1991, 26, 196.
  24. Havriliak, S.; Negami, S. J. Polym. Sci. 1966, C14, 99.
  25. Cole, K. S.; Cole, R. H. J. Chem. Phys. 1941, 9, 341. https://doi.org/10.1063/1.1750906
  26. Davidson, D. W.; Cole, R. H. J. Chem. Phys. 1950, 18, 1484. https://doi.org/10.1063/1.1747518
  27. Debye, P. Polar Molecules; Chemical Catalog. Co.: New York,1929.
  28. Chaudhari, A.; Das, A.; Raju, G.; Chaudhari, H.; Khirade, P.;Narain, N.; Mehrotra, S. C. Proc. Natl. Sci. Counc. ROC (A) 2001,25, 205.
  29. Tabellout, M.; Lanceleur, P.; Emery, J. R. J. Chem. Soc. Farad.Trans. 1990, 86, 1493. https://doi.org/10.1039/ft9908601493
  30. Frolhich, H. Theory of Dielectrics; Oxford University Press:London, 1949.
  31. MouMouzlas, G.; Panopoulos, D. K.; Ritzoulis, G. J. Chem.Engn. Data 1991, 36, 20. https://doi.org/10.1021/je00001a006
  32. Glasstone, S.; Laider, K. J.; Eyring, H. The Theory of RateProcesses; Mc-Graw Hill: New York, 1941.

Cited by

  1. H-bonded molecular interaction study on binary mixtures of mono alkyl ethers of ethylene glycol with different polar solvents by concentration dependent dielectric analysis vol.44, pp.6, 2006, https://doi.org/10.1080/00319100600594521
  2. On Intermolecular Dipolar Coupling in Two Strongly Polar Liquids: Dimethyl Sulfoxide and Acetonitrile vol.115, pp.20, 2011, https://doi.org/10.1021/jp2013336
  3. Studies on Hydrogen-Bond Interactions in Ternary Mixtures of Polar Solvents by Dielectric Constant Measurements vol.32, pp.10, 2011, https://doi.org/10.1007/s10765-011-1086-8
  4. Deformation C-S and S=O bond polarizations in dimethyl sulfoxide vol.85, pp.2, 2011, https://doi.org/10.1134/S0036024411020099
  5. Dielectric relaxation study of hexamethylphosphoramide–1,4-dioxane mixtures using time domain reflectometry (TDR) technique vol.50, pp.4, 2012, https://doi.org/10.1080/00319104.2011.620104
  6. Temperature and Concentration Dependences of the Electric Conductivity of Dimethyl Sulfoxide + Ammonium Nitrate Electrolytes vol.58, pp.8, 2013, https://doi.org/10.1021/je400402n
  7. Concentration Evolution of the Dielectric Response of Hydrogen-Bonded Supramolecular Polymers Formed by Dialkylurea in Non-Polar Medium vol.47, pp.7, 2014, https://doi.org/10.1021/ma500069u
  8. Dielectric relaxation in isobutyl alcohol-NMP and isobutyl alcohol-DMSO mixtures studied by microwave dielectric relaxation spectroscopy vol.293, pp.1, 2015, https://doi.org/10.1007/s00396-014-3406-6
  9. Dielectric properties of binary and ternary mixtures of some aliphatic alcohols: analysis of H-bonded interaction in complex systems vol.48, pp.1, 2010, https://doi.org/10.1080/00319100802641740
  10. Characterization of Heterogeneous Interaction Behavior in Ternary Mixtures by a Dielectric Analysis: Equi-Molar H–bonded Binary Polar Mixtures in Aqueous Solutions vol.35, pp.8, 2006, https://doi.org/10.1007/s10953-006-9053-x
  11. Microwave dielectric spectroscopy of pure and mixed aromatic ester solvents vol.1, pp.1, 2008, https://doi.org/10.1186/1754-0429-1-4
  12. Studies on dielectric relaxation in relation to viscosity of some anilines, phenol, and their binary mixtures at microwave frequencies vol.97, pp.2, 2019, https://doi.org/10.1139/cjp-2018-0136
  13. Dielectric properties of binary and ternary mixtures of alcohols: Analysis of H-bonded interaction in complex systems vol.353, pp.47, 2007, https://doi.org/10.1016/j.jnoncrysol.2007.04.049
  14. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  15. Investigation of temperature dependent dielectric relaxation studies of 1,4-Butanediol/DMSO binary mixtures at the microwave frequency vol.299, pp.None, 2020, https://doi.org/10.1016/j.molliq.2019.112190