• Title/Summary/Keyword: Chemical-structural properties

Search Result 965, Processing Time 0.038 seconds

Syntheses and Characterization of Co/Fe3O4 Nanocomposites by Polyol Process

  • Oh, Young-Woo;Go, Geun-Ho;Park, Moon-Su
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.4
    • /
    • pp.338-342
    • /
    • 2010
  • Co, $Fe_3O_4$ and Co/$Fe_3O_4$ nanoparticles were synthesized by a polyol process in order to develop their new applications and improve chemical, magnetic properties. The synthesis involved a polyol process using Fe, Co acetylacetonate as precursors and 1-2 hexadecanediol as the polyol. The synthesized $Fe_3O_4$ and Co/$Fe_3O_4$ nanocomposite particles were monodispersed and self arrayed ranging in size of 8~10 and 10~25 nm, respectively. The Co nanoparticle has a crystallite size of 10~40 nm. The synthesized nanoparticles were characterized by their structural, morphological, compositional and magnetic properties using TEM-EDS, XRD, and PPMS techniques.

A study on the characterization of properties and stabilities of a solar cell using diamond-like carbon/silicon heterojunctions (다이어몬드상 탄소/실리콘 이종접합 태양전지의 특성 및 신뢰성 분석에 관한 연구)

  • Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.683-687
    • /
    • 1997
  • The purpose of this work is to develop a highly reliable solar cell based on the diamond-like carbon(DLC)/silicon heterojunction. Thin films of DLC have been deposited by employing both filtered cathodic vacuum arc(FCVA) and magnetron plasma-enhanced chemical vapor deposition(m-PECVD) systems. Structural, electrical, and optical properties of DLC films deposited are systematically analyzed as a function of deposition conditions, such as magnetic field, substrate bias voltage, gas pressure, and nitrogen content. The I-V measurement has been used to elucidate the mechanism responsible for the conduction process in the DLC/Si junction. Photoresponse characteristics of the junction are measured and its reliability against temperature and light stresses is also analyzed.

  • PDF

Transparent Conducting Zinc-Tin-Oxide Layer for Application to Blue Light Emitting-diode

  • Kim, Do-Hyeon;Kim, Gi-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.346.2-346.2
    • /
    • 2014
  • To use the GaN based light-emitting diodes (LEDs) as solid state lighting sources, the improvement of light extraction and internal quantum efficiency is essential factors for high brightness LEDs. In this study, we suggested the new materials system of a zinc tin oxide (ZTO) layer formed on blue LED epi-structures to improve the light extraction. ZTO is a representative n-type oxide material consisted of ZnO and SnO system. Moreover, ZTO is one of the promising oxide semiconductor material. Even though ZTO has higher chemical stability than IGZO owing to its SnO2 content this has high mobility and high reliability. After formation of ZTO layer on p-GaN layer by using the spin coating method, structural and optical properties are investigated. The x-ray diffraction (XRD) measurement results show the successful formation of ZTO. The photoluminescence (PL) and absorption spectrum shows that it has 3.6-4.1eV band gap. Finally, the light extraction properties of ZTO/LED chip using electroluminescence (EL) measurement were investigated. The experimental and theoretical analyses were simultaneously conducted.

  • PDF

Electrical and Optical Properties of Ti-ZnO Films Grown on Glass Substrate by Atomic Layer Deposition (원자층 증착법을 통하여 유리 기판에 증착한 Ti-ZnO 박막의 전기적 광학적 특성)

  • Lee, U-Jae;Kim, Tae-Hyeon;Gwon, Se-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.57-57
    • /
    • 2018
  • Zinc-oxide (ZnO), II-VI semiconductor with a wide and direct band gap (Eg: 3.2~3.4 eV), is one of the most potential candidates to substitute for ITO due to its excellent chemical, thermal stability, specific electrical and optoelectronic property. However, the electrical resistivity of un-doped ZnO is not low enough for the practical applications. Therefore, a number of doped ZnO films have been extensively studied for improving the electrical conductivities. In this study, Ti-doped ZnO films were successfully prepared by atomic layer deposition (ALD) techniques. ALD technique was adopted to careful control of Ti doping concentration in ZnO films and to show its feasible application for 3D nanostructured TCO layers. Here, the structural, optical and electrical properties of the Ti-doped ZnO depending on the Ti doping concentration were systematically presented. Also, we presented 3D nanostructured Ti-doped ZnO layer by combining ALD and nanotemplate processes.

  • PDF

First-Principle Study on Structural and Electronic Properties of zigzag Carbon Nanotubes

  • Lee, Yong ju;Park, Jejune
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.446-449
    • /
    • 2014
  • Carbon Nanotube (CNT) have been intensively investigated since they have been considered as building blocks of nanoscience and nanotechnology. Theoretical and computational studies on CNTs have revealed their physical and chemical properties and helped researchers build various experimental devices to study them in depth. However, there have been only few systematic studies on detailed changes in electronic structures of CNTs due to geometrical structure modifications. In this regard, it is necessary to perform systematic investigations of the modifications in electronic structures of CNTs, as their geometrical configurations are altered, using the first-principles density functional theory. In other words, it is essential to determine the true equilibrium structure of CNTs. In this work, we considered the different atomic configurations by maintaining their symmetries, but changing all the inequivalent bonding types one by one. Furthermore, as for CNTs, for example, the way the graphene sheet is wrapped is represented by a pair of indices (n,m) and electronic structures of CNTs vary depending on different indices. Our results suggest all the significant couplings between electronic and geometric structures in CNTs.

  • PDF

The Vacuum Pressure Effects on Electrochromic Properties of Tungsten Oxide Thin Films by Electron Beam Evaporation (전자비임에 의해 제작된 WO$_3$ 박막의 전기적착색 특성에 대한 진공도의 효과)

  • 이길동
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.05a
    • /
    • pp.41-44
    • /
    • 1995
  • The electrochromic WO$_3$ thin films were prepared by using an electron - beam evaporation technique. The influence of the electron - beam evaporation conditions. especially the vacuum pressure, and resistance of ITO substrate on the structural and electrochromic properties of the investigated film was presented. This films showed electrochromic behavior in an aqueous electrolyte of 1 M H$_2$SO$_4$. Among these WO$_3$ thin films, films prepared at a vacuum pressure of 10$^{-4}$ mbar were found to be most stable in terms of cycling durability. The chemical stability of film against dissolution in the aqueous solution was also shown to depend on the quantity of water in the film.

  • PDF

Detection of Hydrofluoric Acid Using Cadmium Selenide Nanoparticles (카드뮴 셀레나이드 나노입자를 이용한 HF의 감지)

  • Kim, Sungjin
    • Journal of Integrative Natural Science
    • /
    • v.3 no.2
    • /
    • pp.112-116
    • /
    • 2010
  • Prepared CdSe nanoparticles were systems, one of the most studied and useful nanostructures. Semiconductor quantum dots (QDs) have been the subject of much interest for both fundamental reseach and technical applications in recent years, due mainly to their strong size dependent properties and excellent chemical processibility. CdSe nanocrystals were synthesized by using sol-gel process. Synthesized CdSe quantum dots were studied to evaluate the optical, electronic and structural properties using UV-absorption, and photoluminescence (PL) measurement. Prepared CdSe nanoparticles were subjected to sense hydrofluoric acid. Photoluminescence was quenched upon adding of hydrofluoric acid.

New Transparent Conducting B-doped ZnO Films by Liquid Source Misted Chemical Deposition Method (LSMCD 장비를 이용 Boron 도핑 ZnO 박막제조 및 특성평가)

  • Kim, Gil-Ho;Woo, Seong-Ihl;Bang, Jung-Sik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.307-308
    • /
    • 2008
  • Zinc oxide is a direct band gap wurtzite-type semiconductor with band gap energy of 3.37eV at room temperature. the n-type doped ZnO oxides, B doped ZnO (BZO) is widely studied in TCOs materials as it shows good electrical, optical, and luminescent properties. we focused on the fabrication of B doped ZnO films with glass substrate using the LSMCD at low temperature. And Novel boron-doped ZnO thin films were deposited and characterized from the structural, optical, electrical point of view. The structure, morphology, and optical properties of the films were studied as a function of by employing the XRD, SEM, Hall system and micro Raman system.

  • PDF

A study on physical and chemical properties of chalcogenides for an aspheric lens (비구면 렌즈의 설계 및 제조를 위한 칼코게나이드계 유리의 물리적 화학적 특성 연구)

  • Ko, Jun-Bin;Kim, Jeong-Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.3
    • /
    • pp.388-393
    • /
    • 2010
  • In recent years the research has been focused on the preparation of special glasses, i.e., chalcogenide and heavy metal oxide ones that can transmit optical radiation above 2 um and also other optical parameters exceed those of silica based glasses. The attention in this paper is focused on chalcogenide glasses, on preparation of high quality base glass, for an application in infrared optical product design and manufacture. The amorphous materials of As-Se and Ge-As-Se chalcogenides were prepared by a standard melt-quenching technique. The compositions were mesaured by ICP-AES and EPMA, and structural and thermal properties were studied through various annealing processes. Several anomalies of glass transition and crystallization were observed in the DSC/DTA/TG results of the chalcogenide glass.

RF power dependence on field emission property from carbon thin film grown by PECVD (PECVD에 의해 작성된 탄소계 박막의 전계전자방출특성에 대한 RF power 의존성에 관한 연구)

  • ;;K. Oura
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.519-523
    • /
    • 2000
  • Using plasma-enhanced chemical vapor deposition (PECVD), carbon thin film as electron field emitter were fabricated. These carbon thin film were deposited on Si(100) substrate at several RF power. These film were estimated by raman spectroscopy, scanning electron microscopy, and field emission. The field electron emission property of these carbon thin film was estimated by a diode technique. As the result, we observed that the field emission properties of these films were promoted by higher RF power. These results are explained as change of surface morphology and structural properties of carbon thin film

  • PDF