• 제목/요약/키워드: Chemical-looping

검색결과 63건 처리시간 0.028초

CBB를 첨가한 NiO 산소전달입자의 물성 및 반응 특성 (The Effect of CBB(CaO·BaO·B2O3) Addition on the Physical Properties and Oxygen Transfer Reactivity of NiO-based Oxygen Carriers for Chemical Looping Combustion)

  • 백점인;조현근;엄태형;이중범;류호정
    • 한국수소및신에너지학회논문집
    • /
    • 제27권1호
    • /
    • pp.95-105
    • /
    • 2016
  • Spray-dried NiO-based oxygen carriers developed for chemical looping combustion required high calcination temperatures above $1300^{\circ}C$ to obtain high mechanical strength applicable to circulating fluidized-bed process. In this study, the effect of CBB ($CaO{\cdot}BaO{\cdot}B_2O_3$) addition, as a binder, on the physical properties and oxygen transfer reactivity of spray-dried NiO-based oxygen carriers was investigated. CBB addition resulted in several positive effects such as reduction of calcination temperature and increase in oxygen transfer capacity and porosity. However, oxygen transfer rate was considerably decreased. This was more apparent when a higher amount of CBB was added and MgO was added together. From the experimental results, it is concluded that CBB added NiO-based oxygen carriers are not suitable for chemical looping combustion and a new method to reduce calcination temperature while maintaining high oxygen transfer rate of NiO-based oxygen carriers should be found out.

고체연료 매체순환연소기를 위한 회재분리기에서 분리속도 및 분리효율에 미치는 조업변수들의 영향 (Effects of Operating Variables on Separation Rate and Separation Efficiency in Ash Separator for Solid Fuel Chemical Looping Combustor)

  • 류호정;이동호;윤주영;장명수;배달희;박재현;백점인
    • 한국수소및신에너지학회논문집
    • /
    • 제27권2호
    • /
    • pp.211-219
    • /
    • 2016
  • To develop an ash separator for the solid fuel chemical looping combustion system, effects of operating variables such as solid injection nozzle velocity, diameter of solid injection nozzle, gap between solid injection line and vent line, vent line inside diameter, and solid intake height on solid separation rate and solid separation efficiency were measured and discussed using heavy and coarse particle and light and fine particles mixture as bed material in an acrylic fluidized bed apparatus. The solid separation rate increased as the solid injection nozzle velocity and the diameter of solid injection nozzle increased. However, the solid separation rate decreased as the gap between solid injection line and vent line, the vent line inside diameter, and the solid intake height increased. The solid separation efficiency was in inverse proportion to the solid separation rate. In this study, we could get high solid separation rate up to 2.39 kg/hr with 91.6% of solid separation efficiency.

LNG 연소 및 스팀생산을 위한 3 MWth 급 매체순환연소 시스템의 기본설계 및 민감도 분석 (Basic Design and Sensitivity Analysis of 3 MWth Chemical Looping Combustion System for LNG Combustion and Steam Generation)

  • 류호정;남형석;황병욱;김하나;원유섭;김대욱;김동원;이규화;백점인
    • 한국수소및신에너지학회논문집
    • /
    • 제32권5호
    • /
    • pp.374-387
    • /
    • 2021
  • Basic design of 3 MWth chemical looping combustion system for LNG combustion and steam generation was conducted based on the mass and energy balance and the previous reactivity test results of oxygen carrier particles. Process configuration including fast fluidized bed (air reactor), loop seal and bubbling fluidized bed (fuel reactor) was confirmed and their dimensions were determined by mass balance. Then, the external fluidized bed heat exchanger (FBHE) was adopted based on the energy balance to extract heat from the system. The optimum reactor design and operating condition was confirmed with sensitivity analysis by modifying system configuration based on the mass and energy balance.

매체순환연소공정용 CaSnO3 산소전달입자의 산화·환원 특성 연구 (A Study on Redox Properties of CaSnO3 Oxygen Carrier for Chemical Looping Combustion Process)

  • 손은남;백승훈;이루세;손정민
    • 공업화학
    • /
    • 제30권1호
    • /
    • pp.43-48
    • /
    • 2019
  • 본 연구는 매체순환연소공정용 산소전달입자로서 $CaSnO_3$ 입자의 타당성을 조사하기 위해 수행하였다. $CaSnO_3$은 페롭스카이트 구조를 가지고, 반복되는 환원-산화 반응 후에도 구조적안정성을 보였다. 산소전달량은 환원 반응 시 결정구조 변화를 통해 계산된 이론 수치와 거의 동일한 15.4 wt%를 가졌다. 10번의 환원과 산화 반응 후에, 산소전달량과 산소전달속도는 작동 온도에서 일정하게 유지되었다. 결론적으로, $CaSnO_3$ 입자는 CLC의 산소 운반체로서 좋은 대체 물질이 될 수 있다고 판단하였다.

Development of promotors for fast redox reaction of MgMnO3 oxygen carrier material in chemical looping combustion

  • Hwang, Jong Ha;Lee, Ki-Tae
    • Journal of Ceramic Processing Research
    • /
    • 제19권5호
    • /
    • pp.372-377
    • /
    • 2018
  • MgO or gadolinium-doped ceria (GDC, $Ce_{0.9}Gd_{0.1}O_{2-{\delta}}$) was added as a promoter to improve the oxygen transfer kinetics of $MgMnO_3$ oxygen carrier material for chemical looping combustion. Neither MgO nor GDC reacted with $MgMnO_3$, even at the high temperature of $1100^{\circ}C$. The average oxygen transfer capacities of $MgMnO_3$, 5 wt% $MgO-MgMnO_3$, and 5 wt% $GDC-MgMnO_3$ were 8.74, 8.35, and 8.13 wt%, respectively. Although the addition of MgO or GDC decreased the oxygen transfer capacity, no further degradation was observed during their use in 5 redox cycles. The addition of GDC significantly improved the conversion rate for the reduction reaction of $MgMnO_3$ compared to the use of MgO due to an increase in the surface adsorption process of $CH_4$ via oxygen vacancies formed on the surface of GDC. On the other hand, the conversion rates for the oxidation reaction followed the order 5 wt% $GDC-MgMnO_3$ > 5 wt% $MgO-MgMnO_3$ >> $MgMnO_3$ due to morphological change. MgO or GDC particles suppressed the grain growth of the reduced $MgMnO_3$ (i.e., (Mg,Mn)O) and increased the specific surface area, thereby increasing the number of active reaction sites.

3 MWth 급 매체순환연소 시스템의 운전변수 변화에 따른 성능 예측 (Performance Prediction of 3 MWth Chemical Looping Combustion System with Change of Operating Variables)

  • 류호정;남형석;황병욱;김하나;원유섭;김대욱;김동원;이규화;전명훈;백점인
    • 한국수소및신에너지학회논문집
    • /
    • 제33권4호
    • /
    • pp.419-429
    • /
    • 2022
  • Effects of operating variables on temperature profile and performance of 3 MWth chemical looping combustion system were estimated by mass and energy balance analysis based on configuration and dimension of the system determined by design tool. Air reactor gas velocity, fuel reactor gas velocity, solid circulation rate, and solid input percentage to fluidized bed heat exchanger were considered as representative operating variables. Overall heat output and oxygen concentration in the exhaust gas from the air reactor increased but temperature difference decreased as air reactor gas velocity increased. Overall heat output, required solid circulation rate, and temperature difference increased as fuel reactor gas velocity increased. However, overall heat output and temperature difference decreased as solid circulation rate increased. Temperature difference decreased as solid circulation rate through the fluidized bed heat exchanger increased. Effect of each variables on temperature profile and performance can be determined and these results will be helpful to determine operating range of each variable.

Development of MgFe2O4 as an oxygen carrier material for chemical looping hydrogen production

  • Jong Ha Hwang;Ki-Tae Lee
    • Journal of Ceramic Processing Research
    • /
    • 제21권1호
    • /
    • pp.57-63
    • /
    • 2020
  • Chemical looping hydrogen production (CLHP) is an attractive technology for H2 production due to its ability to produce H2 and capture CO2 from fossil fuels simultaneously. In this paper, we present MgFe2O4 as an oxygen carrier material with high efficiency, low cost, and stable properties for CLHP. The redox reactions occurred reversibly in the fuel, steam, and air reactor as MgFe2O4→MgO/Fe, MgO/Fe→MgO/Fe3O4, and MgO/Fe3O4→MgFe2O4, respectively. The oxygen transfer capacities of MgFe2O4 for 5% H2/N2 and 5% CO/N2 gases were about 23 wt% at 900 ℃. Both the oxygen transfer capacity and rate were well maintained during 10 redox cycles at 900 ℃. No phase changes or agglomeration occurred as the redox cycle number increased. Similarly, MgFe2O4 did not exhibit significant degradation in its total amount or maximum rate of H2 production during four redox cycles. The average calculated amount of H2 production for MgFe2O4 was 2,806 L/day per unit mass (kg).

Performance Comparison of Spray-dried Mn-based Oxygen Carriers Prepared with γ-Al2O3, α-Al2O3, and MgAl2O4 as Raw Support Materials

  • Baek, Jeom-In;Kim, Ui-Sik;Jo, Hyungeun;Eom, Tae Hyoung;Lee, Joong Beom;Ryu, Ho-Jung
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제2권2호
    • /
    • pp.285-291
    • /
    • 2016
  • In chemical-looping combustion, pure oxygen is transferred to fuel by solid particles called as oxygen carrier. Chemical-looping combustion process usually utilizes a circulating fluidized-bed process for fuel combustion and regeneration of the reduced oxygen carrier. The performance of an oxygen carrier varies with the active metal oxide and the raw support materials used. In this work, spraydried Mn-based oxygen carriers were prepared with different raw support materials and their physical properties and oxygen transfer performance were investigated to determine that the raw support materials used are suitable for spray-dried manganese oxide oxygen carrier. Oxygen carriers composed of 70 wt% $Mn_3O_4$ and 30 wt% support were produced using spray dryer. Two different types of $Al_2O_3$, ${\gamma}-Al_2O_3$ and ${\alpha}-Al_2O_3$, and $MgAl_2O_4$ were applied as starting raw support materials. The oxygen carrier prepared from ${\gamma}-Al_2O_3$ showed high mechanical strength stronger than commercial fluidization catalytic cracking catalyst at calcination temperatures below $1100^{\circ}C$, while the ones prepared from ${\alpha}-Al_2O_3$ and $MgAl_2O_4$ required higher calcination temperatures. Oxygen transfer capacity of the oxygen carrier prepared from ${\gamma}-Al_2O_3$ was less than 3 wt%. In comparison, oxygen carriers prepared from ${\alpha}-Al_2O_3$ and $MgAl_2O_4$ showed higher oxygen transfer capacity, around 3.4 and 4.4 wt%, respectively. Among the prepared Mn-based oxygen carriers, the one made from $MgAl_2O_4$ showed superior oxygen transfer performance in the chemical-looping combustion of $CH_4$, $H_2$, and CO. However, it required a high calcination temperature of $1400^{\circ}C$ to obtain strong mechnical strength. Therefore, further study to develop new support compositions is required to lower the calcination temperature without decline in the oxygen transfer performance.

금속 산화물을 기반으로 한 이산화탄소 포집과 저장에 대한 최근 기술 (Recent Development in Metal Oxides for Carbon Dioxide Capture and Storage)

  • 오현영;라즈쿠마 파텔
    • 멤브레인
    • /
    • 제30권2호
    • /
    • pp.97-110
    • /
    • 2020
  • 이산화탄소 포집 및 저장기술(CCS)은 인류발생적 요인에 의한 이산화탄소 배출 증가와 그로 인한 기후변화를 완화시킬 수 있는 기술 중 하나이다. 그 중, 매체 순환식 연소(chemical looping combustion, CLC)와 칼슘루핑(calcium looping) 기술은 현재 아민 스크러빙(amine scrubbing)을 대체할 수 있는 유망한 기술로 주목받고 있다. 두 방법 모두 금속 산화물을 이용한 연속적인 순환 사이클 반응에 의한 것이다. 전체적인 이산화탄소 포집 및 저장 성능의 향상을 위해서는 사이클을 거듭하며 발생하는 소결(sintering)로 인한 안정성 저하 문제를 해결하고 금속 산화물의 구조 또한 최적화해야 한다. 금속 산화물 표면에 얇은 박막을 형성하는 것은 소결로 인한 손상을 막을 수 있는 방법이다. 이러한 박막 제조 기술로 잘 알려진 기술에는 화학기상증착법(chemical vapor deposition)과 원자층증착기술(atomic layer deposition)이 있다. 본 총설에서는 CVD, ALD 기술을 비롯하여 효과적인 반응 안정성 향상을 위한 안정제 첨가 방법, 금속 산화물 구조 개선에 대한 다양한 최근 기술들을 다루었다.

매체순환연소를 위한 Ni계열 산소전달입자의 반응 특성 및 반응 모델 (Reaction Characteristics and Kinetics of Ni-bsed Oxygen Carrier for Chemical Looping Combustion)

  • 박지혜;황라현;백점인;류호정;이광복
    • 한국수소및신에너지학회논문집
    • /
    • 제29권1호
    • /
    • pp.90-96
    • /
    • 2018
  • Reaction characteristics and kinetics of a oxygen carrier (OCN717-R1SU) for chemical looping combustion (CLC) have been investigated using TGA by changing gas concentration (10-30 vol.% $CH_4$) and reaction temperature ($825-900^{\circ}C$). Reaction rate of OCN717-R1SU increased as temperature increased and it was found that reaction is delayed at the initial reaction regime. Johnson-Mehl-Avrami (JMA) model was adopted to explain the reaction phenomenon. The activation energy (E) determined by JMA model in reduction reaction of OCN717-R1SU is $151.7{\pm}2.03kJ/mol$ and pre-exponential factor and JMA exponent were also obtained. The parameters calculated in this study will be applied in design of the reactor and operation conditions for CLC process.