DOI QR코드

DOI QR Code

Reaction Characteristics and Kinetics of Ni-bsed Oxygen Carrier for Chemical Looping Combustion

매체순환연소를 위한 Ni계열 산소전달입자의 반응 특성 및 반응 모델

  • PARK, JI HYE (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • HWANG, RA HYUN (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • BAEK, JEOM-IN (Korea Electric Power Corporation (KEPCO) Research Institute) ;
  • RYU, HO-JUNG (Korea Institute of Energy Research) ;
  • YI, KWANG BOK (Department of Chemical Engineering Education, Chungnam National University)
  • 박지혜 (충남대학교 에너지과학기술대학원) ;
  • 황라현 (충남대학교 에너지과학기술대학원) ;
  • 백점인 (한국전력공사전력연구원) ;
  • 류호정 (한국에너지기술연구원) ;
  • 이광복 (충남대학교 화학공학교육과)
  • Received : 2017.12.05
  • Accepted : 2018.02.28
  • Published : 2018.02.28

Abstract

Reaction characteristics and kinetics of a oxygen carrier (OCN717-R1SU) for chemical looping combustion (CLC) have been investigated using TGA by changing gas concentration (10-30 vol.% $CH_4$) and reaction temperature ($825-900^{\circ}C$). Reaction rate of OCN717-R1SU increased as temperature increased and it was found that reaction is delayed at the initial reaction regime. Johnson-Mehl-Avrami (JMA) model was adopted to explain the reaction phenomenon. The activation energy (E) determined by JMA model in reduction reaction of OCN717-R1SU is $151.7{\pm}2.03kJ/mol$ and pre-exponential factor and JMA exponent were also obtained. The parameters calculated in this study will be applied in design of the reactor and operation conditions for CLC process.

Keywords

References

  1. H. J. Ryu, K. S. Kim, Y. S. Park, and M. H. Park, "Reduction Characteristics of Oxygen Carrier Particles for Chemicallooping Combustor with Different Fuels", Trans. of the Korean Hydrogen and New Energy Society, Vol. 20, No. 1, 2009, pp. 45-54.
  2. J. D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, and R. D. Srivastava, "Advances in $CO_2$ capture technology-the US Department of Energy's Carbon Sequestration Program" Int. J. Greenhouse Gas Control, Vol. 2, No. 1, 2008, pp. 9-20. https://doi.org/10.1016/S1750-5836(07)00094-1
  3. H. J. Ryu, "$CO_2-NO_x$ free chemical-looping combustion technology." KOSEN report, http://www.kosen21.org, 2003.
  4. H. Kim, J. H. Park, J. I. Baek, and H. J. Ryu, "Selection of Oxygen Carrier Candidates for Chemical Looping Combustion by Measurement of Oxygen Transfer Capacity and Attrition Loss", Trans. of the Korean Hydrogen and New Energy Society, Vol. 27, No. 4, 2016, pp. 404-411. https://doi.org/10.7316/KHNES.2016.27.4.404
  5. L. Protasova and F. Snijkers, "Recent developments in oxygen carrier materials for hydrogen production via chemical looping processes", Fuel, Vol. 181, No. 1, 2016, pp. 75-93. https://doi.org/10.1016/j.fuel.2016.04.110
  6. J. H. Jeong, J. W. Park, and W. L. Yoon, "Redox Characteristics of $CoO_x/CoAl_2O_4$ as a Oxygen Carrier for Chemical-looping Combustion", J. Korean Ind. Eng. Chem., Vol. 14, No. 4, 2003, pp. 411-417.
  7. H. J. Ryu, K. S. Kim, Y. S. Park, and M. H. Park, "Natural Gas Combustion Characteristics of Mass Produced Oxygen Carrier Particles for Chemical-Looping Combustor in a Batch Type Fluidized Bed Reactor", Trans. of the Korean Hydrogen and New Energy Society, Vol. 20, No. 2, 2009, pp. 151-160.
  8. H. J. Ryu, J. W. Kim, W. K. Jo, and M. H. Park, "Selection of the Best Oxygen Carrier Particle for Syngas Fueled Chemical-Looping Combustor", Korean Chem. Eng. Res., Vol. 45, No. 5, 2007, pp. 506-514.
  9. J. A. Medrano, H. P. Hamers, G. Williams, M. van Sint Annaland, and F. Gallucci, "$NiO/CaAl_2O_4$ as active oxygen carrier for low temperature chemical looping applications", Appl. Energy, Vol. 158, 2015, pp. 86-96. https://doi.org/10.1016/j.apenergy.2015.08.078
  10. C. Dueso, M. Ortiz, A. Abad, F. Garcia-Labiano, F. Luis, P. Gayan, and J. Adanez, "Reduction and oxidation kinetics of nickel-based oxygen-carriers for chemical-looping combustion and chemical-looping reforming", Chem. Eng. J., Vol. 188, 2012, pp. 142-154. https://doi.org/10.1016/j.cej.2012.01.124
  11. H. J. Ryu, D. H. Lee, M. S. Jang, J. H. Kim, and J. I. Baek, "Conceptual Design and Feasibility Study on 0.5 MWth Pressurized Chemical Looping Combustor 0.5 MWth", Trans. of the Korean Hydrogen and New Energy Society, Vol. 27, No. 2, 2016, pp. 201-210. https://doi.org/10.7316/KHNES.2016.27.2.201
  12. J. I. Baek, S. R. Yang, T. H. Eom, J. B. Lee, and C. K. Ryu, "Effect of MgO addition on the physical properties and reactivity of the spray-dried oxygen carriers prepared with a high content of NiO and $Al_2O_3$", Fuel, Vol. 144, 2015, pp. 317-326. https://doi.org/10.1016/j.fuel.2014.11.035
  13. J. I. Baek, C. K. Ryu, J. H. Lee, T. H. Eom, J. B. Lee, H. J. Ryu, J. H. Ryu, and J. Yi, "The effects of using structurally less-stable raw materials for the support of a spray-dried oxygen carrier with high NiO content", Fuel, Vol. 102, 2012, pp. 106-114. https://doi.org/10.1016/j.fuel.2012.05.049
  14. A. Tilland, L. Franck-Lacaze, and E. Schaer, "Kinetic determination of chemical looping combustion reactions in a continuous stirred tank reactor: Reduction of the oxygen carrier" Chem. Eng. Sci., Vol. 162, 2017, pp. 341-354. https://doi.org/10.1016/j.ces.2015.09.015
  15. A. Abad, J. Adanez, A. Cuadrat, F. Garcia-Labiano, P. Gayan, and F. Luis, "Kinetics of redox reactions of ilmenite for chemical-looping combustion", Chem. Eng. Sci., Vol. 66, No. 4, 2011, pp. 689-702. https://doi.org/10.1016/j.ces.2010.11.010
  16. Z. Sarshar and S. Kaliaguine, "Reduction kinetics of perovskite- based oxygen carriers for chemical looping combustion", Ind. Eng. Chem. Res., Vol. 52, No. 21, 2013, pp. 6946-6955. https://doi.org/10.1021/ie400766b
  17. E. R. Monazam, R. Siriwardane, R. W. Breault, H. Tian, L. J. Shadle, G. Richards, and S. Carpenter, "Kinetics of the reduction of CuO/bentonite by methane($CH_4$) during chemical looping combustion", Energy & Fuels, Vol. 26, No. 5, 2012, pp. 2779-2785. https://doi.org/10.1021/ef300072d
  18. E. R. Monazam, R. W. Breault, and R. Siriwardane, "Kinetics of hematite to wustite by hydrogen for chemical looping combustion" Energy & Fuels, Vol. 28, No. 8, 2014, pp. 5406-5414. https://doi.org/10.1021/ef501100b
  19. E. R. Monazam, R. W. Breault, H. Tian, and R. Siriwardane, "Reaction kinetics of mixed CuO-$Fe_2O_3$ with methane as oxygen carriers for chemical looping combustion", Ind. Eng. Chem. Res., Vol. 54, No. 48, 2015, pp. 11966-11974. https://doi.org/10.1021/acs.iecr.5b02848
  20. J. Malek, "The applicability of Johnson-Mehl-Avrami model in the thermal analysis of the crystallization kinetics of glasses", Thermochimica Acta, Vol. 267, 1995, pp. 61-73. https://doi.org/10.1016/0040-6031(95)02466-2
  21. J. Bessieres, A. Bessieres, and J. J. Heizmann, "Iron oxide reduction kinetics by hydrogen", Int. J. Hydrog. Energy, Vol. 5, No. 6, 1980, pp. 585-595. https://doi.org/10.1016/0360-3199(80)90037-3
  22. M. Luo, S. Wang, L. Wang, and M. Lv, "Reduction kinetics of iron-based oxygen carriers using methane for chemical- looping combustion" J. Power Sources, Vol. 270, 2014, pp. 434-440. https://doi.org/10.1016/j.jpowsour.2014.07.100
  23. Q. Zafar, A. Abad, T. Mattisson, and B. Gevert, "Reaction kinetics of freeze-granulated $NiO/MgAl_2O_4$ oxygen carrier particles for chemical-looping combustion", Energy & Fuels, Vol. 21, No. 2, 2007, pp. 610-618. https://doi.org/10.1021/ef060450y
  24. P. Erri and A. Varma, "Diffusional effects in nickel oxide reduction kinetics" Ind. Eng. Chem. Res., Vol. 48, No. 1, 2008, pp. 4-6. https://doi.org/10.1021/ie071588m
  25. B. Jankovic, B. Adnadevic, and S. Mentus, "The kinetic analysis of non-isothermal nickel oxide reduction in hydrogen atmosphere using the invariant kinetic parameters method", Thermochimica acta, Vol. 456, No. 1, 2007, pp. 48-55. https://doi.org/10.1016/j.tca.2007.01.033