• Title/Summary/Keyword: Chemical shifts

Search Result 302, Processing Time 0.022 seconds

Substituted Phenyl 2-Thiophenecarboxylates and Benzoates:Synthesis, NMR Spectra, and Aromaticity Index

  • Lee, Chang Gyu;Yu, Ji Suk;Park, Jong Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.1
    • /
    • pp.49-55
    • /
    • 2000
  • A series of m-, and p-substituted phenyl 2-thiophenecarboxylates and benzoates was prepared by the reaction of the corresponding acyl chlorides and phenols. Their $^1H$ and $^{13}C$ NMR chemical shifts were analyzed using single substituent parameter (S SP) and dual substituent parameter (DSP) methods. The relative aromaticity index of thiophene was estimated to be 0.92 from the plot of the chemical shift of the carbonyl carbons of the thienoyl esters against chemical shift of the carbonyl carbons of the benzoyl esters.

Nuclear Magnetic Resonance Spectroscopic Study on Inclusion Complexation of Paracyclophane with Naphthalene Derivatives in Aqueous Solution (프로톤 핵자기공명스펙트럼 측정법에 의한 수용액중 파라시클로판과 나프탈렌 유도체들간의 포접 복합체 형성에 관한 연구)

  • Chun, In-Koo
    • Journal of Pharmaceutical Investigation
    • /
    • v.23 no.3
    • /
    • pp.155-163
    • /
    • 1993
  • Inclusion complexation of 1,7,21,27-tetraaza[7.1.7.1]paracyclophane (CPM 55) with 2,7-dihydroxynaphthalene (2,7-DHN) or 1,3-dihydroxynaphthalene (1,3-DHN) in pD 1.17 $DCl-D_2O$ solution was investigated by $^1H$ nuclear magnetic resonance spectroscopy (NMR) using 4,4'-dimethylaminodiphenylmethane (ACM 11) as an acyclic analog of CPM 55. In CPM 55-naphthalene derivative complex, alkyl protons located in the cavity of CPM 55 were shown to be subjected to anisotropic shielding and protons of naphthalene moiety shifted remarkably to upfield. However, in ACM 11-naphthalene derivative systems, chemical shifts for protons of both DHN compounds were not significant. The remarkable chemical shift changes suggested that the naphthalene moiety of 2,7-DHN or 1,3-DHN was included in the hydrophobic cavity of CPM 55 in aqueous solution. From the continuous variation plots of induced chemical shifts of 2,7-DHN, it was found that 2,7-DHN was included in the cavity of CPM 55 at 1:1 molar stoichiometry. Both computer simulation of a inclusion complex and strong upfield chemical shift changes of 2,7-DHN protons supported the conformation of pseudoaxial inclusion as the presumed geometry of the host-guest complex.

  • PDF

^1H $-NMR Studies on Ln^{3+}$-DMF Systems (Ⅰ). Exchange Rates and Proton Chemical Shifts of CHO Group (Ln^{3+}$-DMF계의 ^1H $-NMR 연구 (Ⅰ). DMF 분자의 교환과 CHO기의 양성자 화학적이동)

  • Mi-Kyung Lee;Chang-Ju Yoon;Young-sang Choi
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.3
    • /
    • pp.345-350
    • /
    • 1992
  • Proton lineshapes and chemical shifts of paramagnetic solutions of Ln$(NO_3)_3$ in DMF have been measured over the temperature range 240K to 3807K. Solvation sphere exchange rates and the thermodynamic exchange parameters for CHO group of the DMF molecules have been extracted from these data. The results were established through a detailed analysis and discussion of the temperature depending data of the 1/$T_2$ and ${\Dellta}{\omega}$ data were analyzed in detail, and it has been found that delocalization of the unpaired electron spin from some $Ln^{3+}$ ion to DMF molecules beyond the first solvation shell would occur, giving rise to a scalar relaxation contribution in the bulk solvent.

  • PDF

Oxidation of carbohydrates and A corbon-13 n. m. r. study of the keto sugars

  • An, Seung-Ho
    • Archives of Pharmacal Research
    • /
    • v.9 no.4
    • /
    • pp.229-232
    • /
    • 1986
  • Three inexpensive oxidation reagents, namely pyridinium chlorochromate, chromium trioxide-dipyridine and nicotinium dichromate were utilized for oxidation of carbohydrates in 78-92% yield. Hydration could be eliminated in the oxidation of pentopyranosides and hexopyranosides, while pentofuranosides had a tendency to be easily hydrated during the oxidation. In the carbon-13 n. m. r. study, the carbonyl function resulted from the oxidation affected on the chemical shifts of $\alpha$- and $\beta$-carbons of methyl 3. 4-O-isopropylidene-$\beta$-D-arabinopyranosid-2-ulose (8) and 1,2 : 4, 5-di-O-isopropylidene-$\beta$-D-erythro-2, 3-hexodiulo-2, 6-pyranose (10) to slightly down fields (0.7-2.6 p. p. m.) compared with the chemical shifts before oxidation. While the carbonyl groups of 1. 2-O-isopropylidene-5-O-ethyloxycarbonyl-$\alpha$-D-erythro-pentofuran-3-ulose (4) and methyl 3, 5-0-isopropylidene-$\alpha$-D-threo-pentofuranosid-2-ulose (6) pushed the $\alpha$-carbons to up fields (3, 2-18.3 p. p. m. However, the order of signals on the spectra before and after oxidation remained unaltered.

  • PDF

Cage Link and the Effect of Cross-Link Breakdown (Cross-Link Breakdown 효과와 Cage Link)

  • Oh, Teresa;Kim, Kyung-Sik
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.517-520
    • /
    • 2004
  • Organosilicate films are promising porous low-dielectric materials, which can replace the silicon dioxide films. It was researched that organosilicate films have two different chemical shifts according to the increase of the flow rate ratio. There are the red shift due to the electron deficient substitution group, and the blue shift of the electron rich substitution group. Among these chemical shifts, the blue shift from $1000 cm^{-1}$ to $1250 cm^{-1}$ was related with the formation of pores. The methyl radicals of the electron-rich substitution group terminate easily the Si-O-Si cross-link, and the Si-O-C cage-link near $1057 cm^{-1}$ is originated from the cross-link breakdown due to much methyl radicals.

  • PDF

Simulations of Two-Dimensional Electronic Correlation Spectra

  • Kim, Hak Jin;Jeon, Seong Jun
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.8
    • /
    • pp.807-815
    • /
    • 2001
  • Two-dimensional (2D) correlation method, which generates the synchronous and the asynchronous 2D spectrum by complex cross correlation of the Fourier transformed spectra, is an analysis method for the changes of the sample spectrum induced by vari ous perturbations. In the present work, the 2D electronic correlation spectra have been simulated for the cases where the sample spectrum composed of two gaussian bands changes linearly. When only the band amplitudes of the sample spectrum change, the synchronous spectrum shows strong peaks at the band centers of the sample spectrum, but the asynchronous spectrum does not make peaks. When the sample spectrum shifts without changing intensity and width, the synchronous spectrum shows peaks around the initial and final positions of the band maximum and the asynchronous spectrum shows long peaks spanning the shifting range. The band width change produces the complex 2D correlation spectra. When the sample spectrum shifts with band broadening, the width change by 50% of full width at half maximum (FWHM) does not give so large an effect on the correlation spectrum as the spectral shift by one half of FWHM of the sample spectrum.

Minimization of Asymmetry Potential in ETH 129-Based Calcium-Selective Membrane Electrodes

  • 박성배;정사라;차근식;김해동
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.11
    • /
    • pp.1033-1037
    • /
    • 1995
  • PVC-based calcium-selective electrodes doped with ETH 129 usually suffer from a shift in the standard potential when they are in contact with protein-containing solutions (e.g. blood serum) after being calibrated with aqueous standards. The shift is due to the development of asymmetry potential in inherently symmetric PVC membranes through the contamination of outer membrane surface by proteins in the biological samples. Membranes prepared with polyurethane showed much reduced shifts in terms of standard potential. This study was performed with a flow-injection system following a protocol designed to observe minor shifts in baseline potential. Other electrochemical properties of the system, including selectivity and response slope, were similar to those obtained with regular PVC-based ones. PVC-based calcium selective membrane electrodes, doped with commonly used ETH 1001, were also tested to compare their electrochemical performances.

Backbone assignment of the intrinsically disordered N-terminal region of Bloom syndrome protein

  • Min June Yang;Chin-Ju Park
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.27 no.3
    • /
    • pp.17-22
    • /
    • 2023
  • Bloom syndrome protein (BLM) is a pivotal RecQ helicase necessary for genetic stability through DNA repair processes. Our investigation focuses on the N-terminal region of BLM, which has been considered as an intrinsically disordered region (IDR). This IDR plays a critical role in DNA metabolism by interacting with other proteins. In this study, we performed triple resonance experiments of BLM220-300 and presented the backbone chemical shifts. The secondary structure prediction based on chemical shifts of the backbone atoms shows the region is disordered. Our data could help further interaction studies between BLM220-300 and its binding partners using NMR.

INTRINSIC NMR ISOTOPE SHIFTS OF CYCLOOCTANONE AT LOW TEMPERATURE (저온에서의 싸이클로옥타논에 대한 고유동위원소 효과)

  • Jung, Miewon
    • Analytical Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.213-224
    • /
    • 1994
  • Several isotopomers of cyclooctanone were prepared by selective deuterium substitution. Intrinsic isotope effects on $^{13}C$ NMR chemical shifts of these isotopomers were investigated systematically at low temperature. These istope effects were discussed in relation to the preferred boat-chair conformation of cyclooctanone. Deuterium isotope effects on NMR chemical shifts have been known for a long time. Especially in a conformationally mobile molecule, isotope perturbation could affect NMR signals through a combination of isotope effects on equilibria and intrinsic effects. The distinction between intrinsic and nonintrinsic effects is quite difficult at ambient temperature due to involvement of both equilibrium and intrinsic isotope effects. However if equilibria between possible conformers of cyclooctanone are slowed down enough on the NMR time scale by lowering temperature, it should be possible to measure intrinsic isotope shifts from the separated signals at low temperature. $^{13}C$ NMR has been successfully utilized in the study on molecular conformation in solution when one deals with stable conformers or molecules were rapid interconversion occurs at ambient temperature. The study of dynamic processes in general requires analysis of spectra at several temperature. Anet et al. did $^1H$ NMR study of cyclooctanone at low temperature to freeze out a stable conformation, but were not able initially to deduce which conformation was stable because of the complexity of alkyl region in the $^1H$ NMR spectrum. They also reported the $^1H$ and $^{13}C$ NMR spectra of the $C_9-C_{16}$ cycloalkanones with changing temperature from $-80^{\circ}C$ to $-170^{\circ}C$, but they did not report a variable temperature $^{13}C$ NMR study of cyclooctanone. For the analysis of the intrinsic isotope effect with relation to cylooctanone conformation, $^{13}C$ NMR spectra are obtained in the present work at low temperatures (up to $-150^{\circ}C$) in order to find the chemical shifts at the temperature at which the dynamic process can be "frozen-out" on the NMR time scale and cyclooctanone can be observed as a stable conformation. Both the ring inversion and pseudorotational processes must be "frozen-out" in order to see separate resonances for all eight carbons in cyclooctanone. In contrast to $^1H$ spectra, slowing down just the ring inversion process has no apparent effects on the $^{13}C$ spectra because exchange of environments within the pairs of methylene carbons can still occur by the pseudorotational process. Several isotopomers of cyclooctanone were prepared by selective deuterium substitution (fig. 1) : complete deuterium labeling at C-2 and C-8 positions gave cyclooctanone-2, 2, 8, $8-D_4$ : complete labeling at C-2 and C-7 positions afforded the 2, 2, 7, $7-D_4$ isotopomer : di-deuteration at C-3 gave the 3, $3-D_2$ isotopomer : mono-deuteration provided cyclooctanone-2-D, 4-D and 5-D isotopomers : and partial deuteration on the C-2 and C-8 position, with a chiral and difunctional case catalyst, gave the trans-2, $8-D_2$ isotopomer. These isotopomer were investigated systematically in relation with cyclooctanone conformation and intrinsic isotope effects on $^{13}C$ NMR chemical shifts at low temperature. The determination of the intrinsic effects could help in the analysis of the more complex effects at higher temperature. For quantitative analysis of intrinsic isotope effects, the $^{13}C$ NMR spectrum has been obtained for a mixture of the labeled and unlabeled compounds because the signal separations are very small.

  • PDF