• 제목/요약/키워드: Chemical shift range

검색결과 94건 처리시간 0.029초

A Possible Merge of FRET and SPR Sensing System for Highly Accurate and Selective Immunosensing

  • Lee, Jae-Beom;Chen, Hongxia;Lee, Jae-Wook;Sun, Fangfang;Kim, Cheol-Min;Chang, Chul-Hun L.;Koh, Kwang-Nak
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권12호
    • /
    • pp.2905-2908
    • /
    • 2009
  • Immuno-sensing for high accurate and selective sensing was performed by fluorescence spectroscopy and surface plasmon resonance (SPR), respectively. Engineered assembly of two fluorescent quantum dots (QDs) with bovine serum albumin (BSA) and anti-BSA was fabricated in PBS buffer for fluorescence analysis of fluorescence resonance energy transfer (FRET). Furthermore, the same bio-moieties were immobilized on Au plates for SPR analysis. Naturally-driven binding affinity of immuno-moieties induced FRET and plasmon resonance angle shift in the nanoscale sensing system. Interestingly, the sensing ranges were uniquely different in two systems: e.g., SPR spectroscopy was suitable for highly accurate analysis to measure in the range of 10$^{-15{\sim}-10$ng/mL while the QD fluorescent sensing system was relatively lower sensing ranges in 10$^{-10{\sim}-6$ng/mL. However, the QD sensing system was larger than the SPR sensing system in terms of sensing capacity per one specimen. It is, therefore, suggested that a mutual assistance of FRET and SPR combined sensing system would be a potentially promising candidate for high accuracy and reliable in situ sensing system of immune-related diseases.

A Study on the Chemisorption of Carbon Monoxide on Silica-Supported Rhodium

  • Jo Woong Lee;Seihun Chang;Won-Il Chung
    • Bulletin of the Korean Chemical Society
    • /
    • 제10권6호
    • /
    • pp.535-543
    • /
    • 1989
  • We have investigated the infrared absorption spectra for carbon monoxide chemisorbed on reduced and oxidized Rh/$SiO_2$ with and without potassium coating within the frequency range of 1800-2200 $cm^{-1}$ at various Rh concentrations, CO pressures, and temperatures. In case of no potassium coating, only two bands at 2070 and 1900 $cm^{-1}$ appeared for CO adsorbed on reduced Rh/$SiO_2$ while for oxidized Rh/$SiO_2$ four bands were found at 2100, 2070, 2040, and 1900 $cm^{-1}$. We have successfully tried to explain the differences between our observations and those by other investigators who used the Rh/$Al_2O_3$ system instead of Rh/$SiO_2$ on the basis of the suggestions by Yates et al. Accordingly, we propose that the surface OH groups are deeply involved in producing the $Rh^{+1}$ sites which are responsible for the gem-dicarbonyl species. On coating with potassium all the IR bands for three carbonyl species were found to suffer red shift, the magnitude of which increased with increasing Rh/CO ratio.

수성가스전이반응(Water Gas Shift Reaction)을 위한 Ce 첨가에 따른 Cu/Mn 촉매의 활성 연구 (Effect of Ce Addition on Catalytic Activity of Cu/Mn Catalysts for Water Gas Shift Reaction)

  • 박지혜;임효빈;황라현;백정훈;구기영;이광복
    • 한국수소및신에너지학회논문집
    • /
    • 제28권1호
    • /
    • pp.1-8
    • /
    • 2017
  • Cu/Mn/Ce catalysts for water gas shift (WGS) reaction were synthesized by urea-nitrate combustion method with the fixed molar ratio of Cu/Mn as 1:4 and 1:1 with the doping concentration of Ce from 0.3 to 0.8 mol%. The prepared catalysts were characterized with SEM, BET, XRD, XPS, $H_2$-TPR, $CO_2$ TPD, $N_2O$ chemisorption analysis. The catalytic activity tests were carried out at a GHSV of $28,000h^{-1}$ and a temperature range of 200 to $400^{\circ}C$. The Cu/Mn(CM) catalysts formed Cu-Mn mixed oxide of spinel structure ($Cu_{1.5}Mn_{1.5}O_4$) and manganese oxides ($MnO_x$). However, when a small amount of Ce was doped, the growth of $Cu_{1.5}Mn_{1.5}O_4$ was inhibited and the degree of Cu dispersion were increased. Also, the doping of Ce on the CM catalyst reduced the reduction temperature and the base site to induce the active site of the catalyst to be exposed on the catalyst surface. From the XPS analysis, it was confirmed that maintaining the oxidation state of Cu appropriately was a main factor in the WGS reaction. Consequently, Ce as support and dopant in the water gas shift reaction catalysts exhibited the enhanced catalytic activities on CM catalysts. We found that proper amount of Ce by preparing catalysts with different Cu/Mn ratios.

소변 중 4-hydroxyproline 분석에 관한 연구 (Determination of Free 4-hydroxyproline with Dansylchloride by HPLC in Human Urine)

  • 이규원;조영봉;이경종
    • Journal of Preventive Medicine and Public Health
    • /
    • 제35권4호
    • /
    • pp.282-286
    • /
    • 2002
  • Objectives : The level of 4-hydroxyproline (4-Hyp) in human urine was measured using high performance liquid chromatography (HPLC) with a fluorescence detector. This method is useful for medical examinations and investigating the radicals induced by physical, chemical, mental stresses. This method is superior to many published several methods in terms of its low cost and ability to analyze many samples. Methods : The urine from workers in a tire manufacturing company (22 male pre- and post-shift workers) and 18 office-workers as controls were analyzed. Data concerning age, the cumulative drinking amount and the cumulative smoking amount was collected with a questionnaire. The optimum applied amount of dansyl-Cl, the optimum reaction temperature and time, the recoveries and the optimum pH of the eluent and buffer were determined.4-Hyp from human urine was derivatized with dansyl-Cl (dimethylamino-naphthalene-1-sulfonyl chloride) after removing the a-amino acid by a treatment with phthalic dicarboxaldehyde (OPA) and cleaned with Bond Elut C18 column. The 4-Hyp derivatives were separated on a reversed phase column by gradient elution with a phosphate buffer (5 mmol, pH 8.0) and acetonitrile, and detected by fluorescence measurements at 340 nm (excitation) and 538 nm (emission). Results : The detection limit for the urinary free 4-Hyp was $0.364{\mu}mol/l$. The recovery rate of 4-Hyp was 99.7%, and the effective pH of the phosphate buffer and borate buffer were 3.0 and 8.0, respectively. From statistical analysis, age, drinking and smoking did not affect the urinary free 4-Hyp in both the controls and workers. The range of urinary 4-Hyp in the controls, pre-shift, and post-shift workers were 0.33-16.44, N.D-49.06, and $0.32-56.27{\mu}mol/l$. From the pared-sample t-test, the urinary 4-Hyp levels in post-shift workers ($11.82{\pm}6.73\;nmmol/mg\;Cre$) were 2-fold higher than in pre-shift workers ($5.36{\pm}5.53\;nmol;/mg\;Cre$) and controls ($4.91{\pm}4.89\;nmol;/mg\;Cre$). Conclusions : This method was developed with high sensitivity, accuracy, and precision. The present method was effectively applied to analyze the urinary free 4-Hyp in both controls and workers.

분무열분해법에 의해 제조된(Ca, Sr)2MgSi2O7:Eu2+ 형광체의 발광 특성 (Photoluminescence Characteristics of (Ca, Sr)2MgSi2O7:Eu2+ Phosphor Particles Prepared by Spray Pyrolysis)

  • 이호민;정경열;정하균;이종흔
    • Korean Chemical Engineering Research
    • /
    • 제44권3호
    • /
    • pp.284-288
    • /
    • 2006
  • 분무열분해법을 이용하여$(Ca,Sr)_{2-y}MgSi_2O_7:Eu^{2+}{_y}$ 형광체 분말을 제조하고 $Eu^{2+}$의 농도, 후열처리온도 변화 및 Ca/Sr 비에 따른 발광특성을 조사하였다. 또한, Ca/Sr의 비를 변화시켜 발광특성의 변화를 관찰하였다. $Ca_2MgSi_2O_7$$Sr_2MgSi_2O_7$ 분말 모두 $1,000^{\circ}C$ 이상의 온도에서 열처리를 했을 때 순수한 정방정계 상이 제조되었다. $Ca_2MgSi_2O_7:Eu^{2+}{_y}$ 녹색 형광체는 $Eu^{2+}(y)$의 농도가 5 mol%, 후열처리 온도가 $1,250^{\circ}C$ 일 때 가장 높은 발광 강도는 보였다. ${(Ca_{1-x},Sr_x)}_{1.95}MgSi_2O_7:{Eu^{2+}}_{0.05}$의 발광 파장은 Sr의 농도가 증가함에 따른 결정장 감소로 인해 524nm에서 456nm로 점진적으로 blue shift 되었다. $Sr_2MgSi_2O_7:Eu^{2+}$는 Sr 자리에 약 10 mol% Ca를 치환시킴으로써 청색 형광체의 발광 강도는 크게 향상되었다. 제조된 분말들은 치밀하지 못하고 다공성 구조를 가져 후열처리 전에는 구형을 유지하였으나 열처리($900{\sim}1,300^{\circ}C$) 후에는 구형의 형상을 잃고 입자들 간의 응집이 발생하였다.

Mg 첨가에 따른 수성가스전이반응용 Cu/ZnO/Al2O3 촉매의 활성 연구 (Enhanced Catalytic Activity of Cu/ZnO/Al2O3 Catalyst by Mg Addition for Water Gas Shift Reaction)

  • 박지혜;백정훈;황라현;이광복
    • 청정기술
    • /
    • 제23권4호
    • /
    • pp.429-434
    • /
    • 2017
  • 저온 수성가스전이반응에서 $Cu/ZnO/MgO/Al_2O_3$ (CZMA) 촉매의 마그네슘의 영향을 조사하기 위하여 Cu/Zn/Mg/Al의 비율을 45/45/5/5 mol%로 공침법을 사용하여 제조하였다. 제조된 촉매들은 BET, $N_2O$ 화학흡착, XRD, $H_2-TPR$ and $NH_3-TPD$를 사용하여 분석되었다. 촉매 활성 테스트는 GHSV $28,000h^{-1}$와 온도 범위 $200{\sim}320^{\circ}C$에서 수행되었다. 동일한 조건에서 마그네슘이 첨가된 촉매(CZMA 400)는 가장 낮은 환원 온도를 나타내며 활성종인 $Cu^+$가 안정적으로 존재하고 또한 많은 약산점을 보유하였다. 또한 마그네슘이 첨가된 촉매(CZMA)는 마그네슘이 첨가되지 않은 촉매(CZA)와 비교하였을 때 240 이상의 높은 온도에서 촉매 활성이 증가하였다. CZMA 400 촉매는 최적의 촉매로서 $240^{\circ}C$, GHSV $28,000h^{-1}$에서 75 h 동안 활성의 저하없이 평균 CO 전환율 77.59%를 나타내었다.

Water Gas Shift 반응을 위한 Cu/ZnO/Al2O3 촉매에서 Al 전구체 투입시간에 따른 촉매 특성 연구 (Effect of Al Precursor Addition Time on Catalytic Characteristic of Cu/ZnO/Al2O3 Catalyst for Water Gas Shift Reaction)

  • 백정훈;정정민;박지혜;이광복;이영우
    • 한국수소및신에너지학회논문집
    • /
    • 제26권5호
    • /
    • pp.423-430
    • /
    • 2015
  • $Cu/ZnO/Al_2O_3$ catalysts for water gas shift (WGS) reaction were synthesized by co-precipitation method with the fixed molar ratio of Cu/Zn/Al precursors as 45/45/10. Copper and zinc precursor were added into sodium carbonate solution for precipitation and aged for 24h. During the aging period, aluminum precursor was added into the aging solution with different time gap from the precipitation starting point: 6h, 12h, and 18h. The resulting catalysts were characterized with SEM, XRD, BET surface measurement, $N_2O$ chemisorption, TPR, and $NH_3$-TPD analysis. The catalytic activity tests were carried out at a GHSV of $27,986h^{-1}$ and a temperature range of 200 to $400^{\circ}C$. The catalyst morphology and crystalline structures were not affected by aluminum precursor addition time. The Cu dispersion degree, surface area, and pore diameter depended on the aging time of Cu-Zn precipitate without the presence of $Al_2O_3$ precursor. Also, the interaction between the active substance and $Al_2O_3$ became more stronger as aging duration, with Al precursor presented in the solution, increased. Therefore, it was confirmed that aluminum precursor addition time affected the catalytic characteristics and their catalytic activities.

Dixon 정량 화학적 변위 자기공명영상을 이용한 척추 골수 지방함량과 이중에너지 방사선 흡수법의 BMD 값의 비교 (Correlation Between Vertebral Marrow Fat Fraction Measured Using Dixon Quantitative Chemical Shift MRI and BMD Value on Dual-energy X-ray Absorptiometry)

  • 윤인영;이화연;김재균
    • Investigative Magnetic Resonance Imaging
    • /
    • 제16권1호
    • /
    • pp.16-24
    • /
    • 2012
  • 목적: Dixon 정량 화학적 변위 자기공명영상(QCSI)의 척추 골수 지방함량과 이중에너지 방사선 흡수법 (DXA)를 통한 BMD 값과의 상관성을 알아본다. 대상과 방법: QCSI와 간의 화학적 변위영상을 포함한 전신 자기공명영상(MRI)과 요추의 DXA를 시행한 68명의 건강한 사람들[평균연령, 50.7세; 범위, 25-76세; 남/여=36/32]을 대상으로 후향적 연구를 시행하였다. 성별과 T-score에 따라 정상(남/여=27/23)과 골감소증(남/여=9/9)집단으로 나누고, MRI로 척추골수와 간의 지방함량을 측정하였다. 각 집단의 나이, 체질량지수(BMI), 골수 지방함량과 간의 지방함량을 비교하였고, 여성에서는 폐경 전후 각 변수들의 비교를 추가하여 Spearman's 상관계수로 평가하였다. 결과: 남성의 나이, BMI, 척추 골수와 간의 지방함량은 정상과 골감소증 집단 사이에 큰 차이를 보이지 않았다. 여성에서는, 골감소증 집단의 평균 나이가 정상집단에 비해 높았고(p=0.01), 폐경된 경우가 많았으나[폐경 전, 26.1%(6/23); 후, 77.8%(7/9); p<0.05], 다른 변수들은 유의한 차이를 보이지 않았다. 골수 지방함량과의 비교에 있어 여성의 나이는 유일한 의미 있는 변수였다(r=0.43, p<0.05). 결론: Dixon QCSI를 통한 척추 골수 지방함량의 측정은 남녀 모두에 있어 DXA BMD 감소를 정확히 반영하지는 않는다.

구리원석광산에서의 Elemental Carbon (EC) 노출에 관한 사례연구 (A Case Study of Exposure to Elemental Carbon (EC) in an Underground Copper Ore Mine)

  • 이수길;김정희;김성수
    • 한국환경과학회지
    • /
    • 제26권9호
    • /
    • pp.1013-1021
    • /
    • 2017
  • Exposure to Diesel Particulate Matter (DPM) potentially causes adverse health effects (e.g. respiratory symptoms, lung cancer). Due to a lack of data on Elemental Carbon (EC) exposure levels in underground copper ore mining (unlike other underground mining industries such as non-metallic and coal mining), this case study aims to provide individual miners' EC exposure levels, and information on their work practices including use of personal protective equipment. EC measurement was carried out during different work activities (i.e. drilling, driving a loader, plant fitting, plant operation, driving a Specialized Mining Vehicle (SMV)) as per NIOSH Method 5040. The copper miners were working 10 h/day and 5 days/week. This study found that the most significant exposures to EC were reported from driving a loader (range $0.02-0.42mg/m^3$). Even though there were control systems (i.e. water tanks and DPM filters) on the diesel vehicles, around 49.5% of the results were over the adjusted recommendable exposure limit ($0.078mg/m^3$). This was probably due to: (1) driver's frequently getting in and out of the diesel vehicles and opening the windows of the diesel vehicles, and (2) inappropriate maintenance of the diesel vehicles and the DPM control systems. The use of the P2 type respirator provided was less than 19.2%. However, there was no significant difference between the day shift results and the night shift results. In order to prevent or minimize exposure to EC in the copper ore mine, it is recommended that the miners are educated in the need to wear the appropriate respirator provided during their work shifts, and to maintain the diesel engine and emission control systems on a regular basis. Consideration should be given to a specific examination of the diesel vehicles' air-conditioning filters and the air ventilation system to control excessive airborne contaminants in the underground copper mine.

Recent progress in aromatic radiofluorination

  • Kwon, Young-Do;Chun, Joong-Hyun
    • 대한방사성의약품학회지
    • /
    • 제5권2호
    • /
    • pp.145-151
    • /
    • 2019
  • Fluorine-18 is considered to be the radionuclide of choice for positron emission tomography (PET). Thus, the development of small molecule-based radiopharmaceuticals for use in diagnostic imaging relies heavily on efficient radiofluorination techniques. Until the early 2000s, diaryliodonium salts and aryliodonium ylides were widely employed as labeling precursors to yield aromatic PET radiotracers with cyclotron-produced [18F]fluoride ion. Rapid recent progress in the development of efficient borylation methods has led to a paradigm shift in 18F-labeling methods. In addition, deoxyfluorination has attracted a great deal of interest as an alternative approach to aryl ring activation with 18F-. In this review, methods for radiolabel development are discussed with a specific focus on the progress made in the last 5 years. Other interesting 18F-based protocols are also briefly introduced. New methods for exploiting 18F- are expected to increase the number of 18F-labeling methods, to allow applications in a range of chemical environments.