• Title/Summary/Keyword: Chemical sensing

Search Result 512, Processing Time 0.029 seconds

Highly sensitive gas sensor using hierarchically self-assembled thin films of graphene oxide and gold nanoparticles

  • Ly, Tan Nhiem;Park, Sangkwon
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.417-428
    • /
    • 2018
  • In this study, we fabricated hierarchically self-assembled thin films composed of graphene oxide (GO) sheets and gold nanoparticles (Au NPs) using the Langmuir-Blodgett (LB) and Langmuir-Schaefer (LS) techniques and investigated their gas-sensing performance. First, a thermally oxidized silicon wafer ($Si/SiO_2$) was hydrophobized by depositing the LB films of cadmium arachidate. Thin films of ligand-capped Au NPs and GO sheets of the appropriate size were then sequentially transferred onto the hydrophobic silicon wafer using the LB and the LS techniques, respectively. Several different films were prepared by varying the ligand type, film composition, and surface pressure of the spread monolayer at the air/water interface. Their structures were observed by scanning electron microscopy (SEM) and atomic force microscopy (AFM), and their gas-sensing performance for $NH_3$ and $CO_2$ was assessed. The thin films of dodecanethiol-capped Au NPs and medium-sized GO sheets had a better hierarchical structure with higher uniformity and exhibited better gas-sensing performance.

Engineering of Recombinant Escherichia coli Towards Methanol Sensing Using Methylobacterium extroquens Two-component Systems

  • Selvamani, Vidhya;Ganesh, Irisappan;Chae, Sowon;Maruthamuthu, Murali kannan;Hong, Soon Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.1
    • /
    • pp.24-31
    • /
    • 2020
  • Five genes (mxbDM, mxcQE and mxaB) are responsible for the transcription of methanol oxidation genes in Methylobacterium strains. Among these, MxbDM and MxcQE constitute the two-component system (TCS) regulating methanol metabolism. In this study, we integrated the methanol-sensing domain of MxbD and MxcQ with the EnvZ/OmpR from Escherichia coli. The domain-swapping strategy resulted in chimeric histidine kinases (HK's) MxbDZ and MxcQZ AM1 containing recombinant E. coli. Real-time quantitative PCR was used to monitor OmpC expression mediated by the chimeric HK and response regulator (RR) OmpR. Further, an ompC promoter based fluorescent biosensor for sensing methanol was developed. GFP fluorescence was studied both qualitatively and quantitatively in response to environmental methanol. GFP measurement also confirmed ompC expression. Maximum fluorescence was observed at 0.05% methanol and 0.01% methanol using MxbDZ and MxcQZ AM1, respectively. Thus the chimeric HK containing E. coli were found to be highly sensitive to methanol, resulting in a rapid response making them an ideal sensor.

Development of a Sensitive Bioassay Method for Quorum Sensing Inhibitor Screening Using a Recombinant Agrobacterium tumefaciens

  • Kim Yeon Hee;Kim Young Hee;Kim Jung Sun;Park Sunghoon
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.4
    • /
    • pp.322-328
    • /
    • 2005
  • Acylhomoserine lactones (AHLs) are known to be the triggering molecules in the quorum sensing mechanism of many gram-negative bacteria. In order to detect AHL inhibitors that are potential biofilm inhibitors, a convenient and sensitive bioassay was developed based on the $\beta$-galactosidase activity ($\beta$-GAL) of a recombinant Agrobacterium tumefaciens strain. A series of commercially available AHLs were tested for inducing $\beta$-GAL at varying concentrations in agar-plate and liquid cultures of the reporter strain. All AHLs tested exhibited a concentration­dependent induction, and octanoyl homoserine lactone (OHL) showed the highest sensitivity with a detection limit of 0.1 nM in the liquid culture assay. When fimbrolide, a known quorum sensing inhibitor, was added, induction of $\beta$-GAL by OHL was repressed. The repression at a constant OHL concentration was dependent on the fimbrolide concentration with the detection limit below 1 ppm, indicating that this assay is a sensitive method for screening AHL inhibitors.

Chemiresistive Gas Sensors for Detection of Chemical Warfare Agent Simulants

  • Lee, Jun Ho;Lee, Hyun-Sook;Kim, Wonkyung;Lee, Wooyoung
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.139-145
    • /
    • 2019
  • Precautionary detection of chemical warfare agents (CWAs) has been an important global issue mainly owing to their toxicity. To achieve proper detection, many studies have been conducted to develop sensitive gas sensors for CWAs. In particular, metal-oxide semi-conductors (MOS) have been investigated as promising sensing materials owing to their abundance in nature and excellent sensitivity. In this review, we mainly focus on various MOS-based gas sensors that have been fabricated for the detection of two specific CWA simulants, 2-chloroethyl ethyl sulfide (2-CEES) and dimethyl methyl phosphonate (DMMP), which are simulants of sulfur mustard and sarin, respectively. In the case of 2-CEES, we mainly discuss $CdSnO_3-$ and ZnO-based sensors and their reaction mechanisms. In addition, a method to improve the selectivity of ZnO-based sensors is mentioned. Various sensors and their sensing mechanisms have been introduced for the detection of DMMP. As the reaction with DMMP may directly affect the sensing properties of MOS, this paper includes previous studies on its poisoning effect. Finally, promising sensing materials for both gases are proposed.

Electrochemical Biosensors based on Nanocomposites of Carbon-based Dots

  • Ngo, Yen-Linh Thi;Jana, Jayasmita;Chung, Jin Suk;Hur, Seung Hyun
    • Korean Chemical Engineering Research
    • /
    • v.58 no.4
    • /
    • pp.499-513
    • /
    • 2020
  • Among the many studies of carbon-based nanomaterials, carbon-based dots (CDs) have attracted considerable interest owing to their large surface area, intrinsic low-toxicity, excellent biocompatibility, high solubility, and low-cost with environmentally friendly routes, as well as their ability for modification with other nanomaterials. CDs have several applications in biosensing, photocatalysis, bioimaging, and nanomedicine. In addition, the fascinating electrochemical properties of CDs, including high active surface area, excellent electrical conductivity, electrocatalytic activity, high porosity, and adsorption capability, make them potential candidates for electrochemical sensing materials. This paper reviews the recent developments and synthesis of CDs and their composites for the proposed electrochemical sensing platforms. The electrochemical principles and future perspective and challenges of electrochemical biosensors are also discussed based on CDs-nanocomposites.

Position/force Control using 6-axis Compliance Device for Chemical Coupler Assembly (케미컬 커플러 체결을 위한 순응장치를 이용한 위치/힘 동시제어)

  • Park, Shi-Baek;Kim, Han-Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.5
    • /
    • pp.909-915
    • /
    • 2022
  • In this paper, a robot automation technology for chemical tank lorry unloading is presented. Handling chemical coupler between tank lorry and ACQC system may be hazardous or toxic to human operators, therefore robot automation is essential. Due to tight tolerance between couplers, even small pose error may result in very large internal force. In order to resolve the problem, compliance between male and female couplers should be introduced with 6-axis compliance device with F/T sensing. The proposed robot automation system consists of a collaborative robot, 6-ax is compliance device with F/T sensing, linear gripper, and robot vision. The position/force control algorithm and experimental results for assembling chemical couplers are presented.

Green Synthesis of Dual Emission Nitrogen-Rich Carbon Dot and Its Use in Ag+ Ion and EDTA Sensing

  • Le Thuy Hoa;Jin Suk Chung;Seung Hyun Hur
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.463-471
    • /
    • 2023
  • Nitrogen-rich carbon dots (NDots) were synthesized by using uric acid as carbon and nitrogen sources. The as-synthesized NDots showed strong dual emissions at 420 nm and 510 nm with excitation at 350 nm and 460 nm, respectively. The physicochemical analyses such as X-ray photoelectron spectroscopy, Transmission electron microscopy and Fourier transform infrared spectroscopy were used to analyze the chemical, physical and morphological structures of NDots. The as-synthesized NDots exhibited wide linear range (0-100 µM) and very low detection limit (124 nM) in Ag+ ion sensing. In addition, Ag+ saturated NDots could be used as an EDTA sensor by the EDTA induced PL recovery.

A QCM-based Sensor System for Detecting NO2 and SO2 (QCM기반 NO2와 SO2 감지용 센서시스템)

  • Hwang, Min-Jin;Shim, Wang Geun;Moon, Hee
    • Korean Chemical Engineering Research
    • /
    • v.51 no.2
    • /
    • pp.285-291
    • /
    • 2013
  • The effects of sensing materials, coating methods, diluent gases, and temperature have been studied in detail to make a quartz crystal microbalance based adsorption sensor system for detecting gases. In particular, sensor elements for detecting $NO_2$ and $SO_2$, that are known as major air pollutants, have been prepared by coating two different polymers, polypyrrole and poly(3,4-ethylenedioxythiophene). The sensor elements prepared in this work have high sensitivity and selectivity for $NO_2$ and $SO_2$ at ppm level concentrations. It was proven that the sensing characteristics and response rate of the sensing elements are highly dependent on the coating method and the loading mass of sensing materials.