DOI QR코드

DOI QR Code

Chemiresistive Gas Sensors for Detection of Chemical Warfare Agent Simulants

  • Lee, Jun Ho (Department of Materials Science and Engineering, Yonsei University) ;
  • Lee, Hyun-Sook (Department of Materials Science and Engineering, Yonsei University) ;
  • Kim, Wonkyung (School of Nano & Materials Science and Engineering, Kyungpook National University) ;
  • Lee, Wooyoung (Department of Materials Science and Engineering, Yonsei University)
  • Received : 2019.05.15
  • Accepted : 2019.05.29
  • Published : 2019.05.31

Abstract

Precautionary detection of chemical warfare agents (CWAs) has been an important global issue mainly owing to their toxicity. To achieve proper detection, many studies have been conducted to develop sensitive gas sensors for CWAs. In particular, metal-oxide semi-conductors (MOS) have been investigated as promising sensing materials owing to their abundance in nature and excellent sensitivity. In this review, we mainly focus on various MOS-based gas sensors that have been fabricated for the detection of two specific CWA simulants, 2-chloroethyl ethyl sulfide (2-CEES) and dimethyl methyl phosphonate (DMMP), which are simulants of sulfur mustard and sarin, respectively. In the case of 2-CEES, we mainly discuss $CdSnO_3-$ and ZnO-based sensors and their reaction mechanisms. In addition, a method to improve the selectivity of ZnO-based sensors is mentioned. Various sensors and their sensing mechanisms have been introduced for the detection of DMMP. As the reaction with DMMP may directly affect the sensing properties of MOS, this paper includes previous studies on its poisoning effect. Finally, promising sensing materials for both gases are proposed.

Keywords

HSSHBT_2019_v28n3_139_f0003.png 이미지

Fig. 1. (a) Transmission electron microscopy (TEM) image of Ptloaded CdSnO3 thin film (P1, 1 vol%, 5 min), (b) sensing response of P1 sample to 4 ppm of 2-CEES, CEPS, and DMMP at 200, 250, 300, 350, and 400 ℃, and (c) sensing mechanism of P1 sample in 2-CEES environment. (Reprinted with permission from [13]. Copyright 2011 Elsevier); (d) TEM image of Ru-loaded CdSnO3 thin film (R3, 5 vol%, 15 min), and (e) sensing response of R3 sample to 4 ppm of 2-CEES, DMMP, and CEPS at 250, 300, 350, and 400 ℃. (Reprinted with permission from [14]. Copyright 2014 Elsevier).

HSSHBT_2019_v28n3_139_f0004.png 이미지

Fig. 2. (a) TEM image of 1 at% Al-doped ZnO NPs, (b) selectivity of the 1 at% Al-doped ZnO NPs to other gases (10 ppm of NO, CO, and NH3) at 250 ℃, (c) sensing responses of 1 at% doped ZnO NPs (Co, Cu, Mn, and Al) at 500 ℃, (d) and (e) X-ray photoelectron spectra (deconvoluted O 1s spectra) of un-doped and 1 at% Al-doped ZnO NPs. (Reprinted with permission from [16]. Copyright 2018 Elsevier.)

HSSHBT_2019_v28n3_139_f0005.png 이미지

Fig. 3. (a) Sensing performance of ZnO-based QDs sensors, (b) schematic diagram of a mini-GC system, and (c) selectivity of AZO QD sensor integrated with a packed column to air, 10 ppm of 2-CEES, and three different mixtures of gases at 430 ℃. (Reprinted with permission from [17]. Copyright 2019 Elsevier.)

HSSHBT_2019_v28n3_139_f0006.png 이미지

Fig. 4. (a) Scanning electron microscopy (SEM) image of SnO2 nanowires and (b) sensing performance of SnO2 nanowires for various gas concentrations of DMMP, acetonitrile, and ethanol at 500 ℃. (Reprinted with permission from [9]. Copyright 2009 Elsevier); (c) SEM image of Mo5Sb1·Ni2(I) and (d) sensing performance of Mo5Sb1·Ni2(I) at 250, 300, 350, and 400 ℃. ((c) and (d): Reprinted with permission from [10]. Copyright 2009 Elsevier); (e) low- and high-resolution (inset) field-emission SEM images of 1 wt% SnO2-decorated carbon nanofibers (CNF) and (f) sensing responses of 0.5, 1, and 1.5 wt% of ZnO/SnO2-decorated CNF under sequential exposure to various concentrations of DMMP at room temperature. (Reprinted with permission from [19]. Copyright 2011 ACS Publications.)

HSSHBT_2019_v28n3_139_f0007.png 이미지

Fig. 5. Reactional mechanism proposed for (a) thermal degradation of DMMP in the temperature range of 300 to 600 ℃, (b) reaction between SnO2 and DMMP, and (c) reaction between methylphosphonic acid and SnO2. (Reprinted with permission from [23]. Copyright 2006 Elsevier.)

HSSHBT_2019_v28n3_139_f0008.png 이미지

Fig. 6. (a) Sensing response of SnO2 nanowires (black) and SnO2 rheotaxial growth and thermal oxidation (RGTO) sensors (grey) to consequential exposure to (b) 25 ppm of EtOH and 0.2 ppm of DMMP. Operational temperatures were set to 500 ℃ and 400 ℃ for SnO2 nanowire and SnO2 RGTO, respectively. (Reprinted with permission from [9]. Copyright 2009 Elsevier.)

HSSHBT_2019_v28n3_139_f0009.png 이미지

Fig. 7. Response of undoped ZnO NP and Al-doped ZnO NP sensors for 10 ppm of DMMP. (Reprinted with permission from [29]. Copyright 2015 Elsevier.)

Table 1. Comparison of bare, Pt-, and Ru-loaded CdSnO3 sensors (Reprinted with permission from [14]. Copyright 2014 Elsevier).

HSSHBT_2019_v28n3_139_t0001.png 이미지

Table 2. Sensing performance of MOS gas sensors for the detection of DMMP

HSSHBT_2019_v28n3_139_t0002.png 이미지

References

  1. https://www.opcw.org/our-work/what-chemical-weapon(retrieved on Apr. 16, 2019).
  2. https://www.un.org/disarmament/wmd/bio/1925-geneva-protocol/(retrieved on Apr. 16, 2019).
  3. https://www.nti.org/learn/countries/north-korea/chemical/(retrieved on Apr. 16, 2019).
  4. R. S. Pilling, G. Bernhardt, C. S. Kim, J. Duncan, C. B. Crothers, D. Kleinschmidt, D. J. Frankel, R. J. Lad, and B. G. Frederick, "Quantifying gas sensor and delivery system response time using GC/MS", Sens. Actuators B Chem., Vol. 96, No. 1-2, pp. 200-214, 2003. https://doi.org/10.1016/S0925-4005(03)00526-4
  5. M. A. Makinen, O. A. Anttalainen, and M. E. T. Sillanpaa, "Ion mobility spectrometry and its applications in detection of chemical warfare agents", Anal. Chem., Vol. 82, No. 23, pp. 9594-9600, 2010. https://doi.org/10.1021/ac100931n
  6. F. Petersson, P. Sulzer, C. A. Mayhew, P. Watts, A. Jordan, L. Mark, and T. D. Mark, "Real?time trace detection and identification of chemical warfare agent simulants using recent advances in proton transfer reaction time?of?flight mass spectrometry", Rapid Commun. Mass Spectrom., Vol. 23, No. 23, pp. 3875-3880, 2009. https://doi.org/10.1002/rcm.4334
  7. N. Taranenko, J. Pierre, D. Stokes, and T. Vo-Dinh, "Surface-enhanced Raman detection of nerve agent simulant (DMMP and DIMP) vapor on electrochemically prepared silver oxide substrates", J. Raman Spectrosc., Vol. 27, No. 5, pp. 379-384, 1996. https://doi.org/10.1002/(SICI)1097-4555(199605)27:5<379::AID-JRS925>3.0.CO;2-G
  8. D. E. Tevault and R. E. Pellenbarg, "Measurement of atmospheric pollutants by Raman spectroscopy", Sci. Total Environ., Vol. 73, No. 1-2, pp. 65-69, 1988. https://doi.org/10.1016/0048-9697(88)90187-8
  9. G. Sberveglieri, C. Baratto, E. Comini, G. Faglia, M. Ferroni, M. Pardo, A. Ponzoni, and A. Vomiero, "Semiconducting tin oxide nanowires and thin films for chemical warfare agents detection", Thin Solid Films, Vol. 517, No. 22, pp. 6156-6160, 2009. https://doi.org/10.1016/j.tsf.2009.04.004
  10. S. C. Lee, H. Y. Choi, S. J. Lee, W. S. Lee, J. S. Huh, D. D. Lee, and J. C. Kim, "The development of $SnO_2$-based recoverable gas sensors for the detection of DMMP", Sens. Actuators B Chem., Vol. 137, No. 1, pp. 239-245, 2009. https://doi.org/10.1016/j.snb.2008.12.051
  11. S. C. Lee, H. Y. Choi, W. S. Lee, S. J. Lee, D. Ragupathy, D. D. Lee, and J. C. Kim, "Improvement of recovery of $SnO_2$-based thick film gas sensors for dimethyl methylphosphonate (DMMP) detection", Sens. Lett., Vol. 9, No. 1, pp. 101-105, 2011. https://doi.org/10.1166/sl.2011.1428
  12. H. M. Aliha, A. A. Khodadadi, and Y. Mortazavi, "The sensing behavior of metal oxides (ZnO, CuO, and $Sm_2O_3$) doped-$SnO_2$ for detection of low concentrations of chlorinated volatile organic compounds", Sens. Actuators B Chem., Vol. 181, pp. 637-643, 2013. https://doi.org/10.1016/j.snb.2013.02.055
  13. L. A. Patil, V. V. Deo, M. D. Shinde, A. R. Bari, and M. P. Kaushik, "Sensing of 2-chloroethyl ethyl sulfide (2-CEES)- a CWA simulant - using pure and platinum doped nanostructured $CdSnO_3$ thin films prepared from ultrasonic spray pyrolysis technique", Sens. Actuators B Chem., Vol. 160, No. 1, pp. 234-243, 2011. https://doi.org/10.1016/j.snb.2011.07.042
  14. L. A. Patil, V. V. Deo, M. D. Shinde, A. R. Bari, D. M. Patil, and M. P. Kaushik, "Improved 2-CEES sensing performance of spray pyrolized Ru-$CdSnO_3$ nanostructured thin films", Sens. Actuators B Chem., Vol. 191, pp. 130-136, 2014. https://doi.org/10.1016/j.snb.2013.09.091
  15. R. Yoo, C. Oh, M.-J. Song, S. Cho, and W. Lee, "Sensing properties of ZnO nanoparticles for detection of 2-Chloroethyl Ethyl Sulfide as a mustard simulant", J. Nanosci. Nanotechnol., Vol. 18, No. 2, pp. 1232-1236, 2018. https://doi.org/10.1166/jnn.2018.14205
  16. R. Yoo, D. Lee, S. Cho, and W. Lee, "Doping effect on the sensing properties of ZnO nanoparticles for detection of 2-Chloroethyl ethylsulfide as a mustard simulant", Sens. Actuators B Chem., Vol. 254, pp. 1242-1248, 2018. https://doi.org/10.1016/j.snb.2017.07.084
  17. J. H. Lee, H. Jung, R. Yoo, Y. Park, H. Lee, Y.-S. Choe, and W. Lee, "Real-time selective detection of 2-chloroethyl ethyl sulfide (2-CEES) using an Al-doped ZnO quantum dot sensor coupled with a packed column for gas chromatography", Sens. Actuators B Chem., Vol. 284, pp. 444-450, 2019. https://doi.org/10.1016/j.snb.2018.12.144
  18. http://www.centerforhealthsecurity.org/resources/fact-sheets/pdfs/nerve_agents.pdf (retrieved on Apr. 25, 2019).
  19. J. S. Lee, O. S. Kwon, S. J. Park, E. Y. Park, S. A. You, H. Yoon, and J. Jang, "Fabrication of ultrafine metal-oxide-decorated carbon nanofibers for DMMP sensor application", ACS Nano, Vol. 5, No. 10, pp. 7992-8001, 2011. https://doi.org/10.1021/nn202471f
  20. A. Vomiero, S. Bianchi, E. Comini, G. Faglia, M. Ferroni, and G. Sberveglieri, "Controlled growth and sensing properties of $In_2O_3$ nanowires", Cryst. Growth Des., Vol. 7, No. 12, pp. 2500-2504, 2007. https://doi.org/10.1021/cg070209p
  21. G. Sberveglieri, C. Baratto, E. Comini, G. Faglia, M. Ferroni, A. Ponzoni, and A. Vomiero, "Synthesis and characterization of semiconducting nanowires for gas sensing", Sens. Actuators B Chem., Vol. 121, No. 1, pp. 208-213, 2007. https://doi.org/10.1016/j.snb.2006.09.049
  22. R. Yoo, S. Yoo, D. Lee, J. Kim, S. Cho, and W. Lee, "Highly selective detection of dimethyl methylphosphonate (DMMP)using CuO nanoparticles /ZnO flowers heterojunction", Sens. Actuators B Chem., Vol. 240, pp. 1099-1105, 2017. https://doi.org/10.1016/j.snb.2016.09.028
  23. E. Brunol, F. Berger, M. Fromm, and R. Planade, "Detection of dimethyl methylphosphonate (DMMP) by tin dioxide-based gas sensor: Response curve and understanding of the reactional mechanism", Sens. Actuators B Chem., Vol. 120, No. 1, pp. 35-41, 2006. https://doi.org/10.1016/j.snb.2006.01.040
  24. M. K. Templeton and W. H. Weinberg, "Adsorption and decomposition of dimethyl methylphosphonate on aluminum oxide surface", J. Am. Chem. Soc., Vol. 107, No. 1, pp. 97-108, 1985. https://doi.org/10.1021/ja00287a018
  25. L. Cao, S. R. Segal, S. L. Suib, X. Tang, and S. Satyapal, "Thermocatalytic oxidation of dimethyl methylphosphonate on supported metal oxides", J. Catal., Vol. 194, No. 1, pp. 61-70, 2000. https://doi.org/10.1006/jcat.2000.2914
  26. C. S. Kim, R. J. Lad, and C. P. Tripp, "Interaction of organophosphorous compounds with $TiO_2$ and $WO_3$ surfaces probed by vibrational spectroscopy", Sens. Actuators B Chem., Vol. 76, No. 1-3, pp. 442-448, 2001. https://doi.org/10.1016/S0925-4005(01)00653-0
  27. A. Ponzoni, C. Baratto, S. Bianchi, E. Comini, M. Ferroni, M. Pardo, M. Vezzoli, A. Vomiero, G. Faglia, and G. Sberveglieri, "Metal oxide nanowire and thin-film-based gas sensors for chemical warfare simulants detection", IEEE Sens. J., Vol. 8, No. 6, pp. 735-742, 2008. https://doi.org/10.1109/JSEN.2008.923179
  28. W. S. Lee, S. C. Lee, S. J. Lee, D. D. Lee, J. S. Huh, H. K. Jun, and J. C. Kim, "The sensing behavior of $SnO_2$-based thick-film gas sensors at a low concentration of chemical agent simulants", Sens. Actuators B Chem., Vol. 108, No. 1-2, pp. 148-153, 2005. https://doi.org/10.1016/j.snb.2005.01.045
  29. R. Yoo, S. Cho, M.-J. Song, and W. Lee, "Highly sensitive gas sensor based on Al-doped ZnO nanoparticles for detection of dimethylphosphonate as a chemical warfare agent simulant", Sens. Actuators B Chem., Vol. 221, pp. 217-223, 2015. https://doi.org/10.1016/j.snb.2015.06.076
  30. S. C. Lee, S. Y. Kim, W. S. Lee, S. Y. Jung, B. W. Hwang, D. Ragupathy, D. D. Lee, S. Y.Lee, and J. C. Kim, "Effects of textural properties on the response of a $SnO_2$-based gas sensors for the detection of chemical warfare agents", Sensors, Vol. 11, No. 7, pp. 6893-6904, 2011. https://doi.org/10.3390/s110706893
  31. K.-H. Yun, K.-Y. Yun, G.-Y. Cha, B. H. Lee, J. C. Kim, D. D. Lee, and J. S. Huh, "Gas sensing characteristics of ZnOdoped $SnO_2$ sensors for simulants of the chemical agents", Mater. Sci. Forum, Vol. 486, pp. 9-12, 2005. https://doi.org/10.4028/www.scientific.net/MSF.486-487.9
  32. L. A. Patil, A. R. Bari, M. D. Shinde, V. Deo, and M. P. Kaushik, "Detection of dimethyl methyl phosphonate-a simulant of sarin: The highly toxic chemical warfare-using platinum activated nanocrystalline ZnO thick films", Sens. Actuators B Chem., Vol. 161, No. 1, pp. 372-380, 2012. https://doi.org/10.1016/j.snb.2011.10.047
  33. H.-C. Kim, S.-H. Hong, S.-J. Kim, and J.-H. Lee, "Effects of additives on the DMMP sensing behavior of $SnO_2$ nanoparticles synthesized by hydrothermal method" J. Sens. Sci. Technol., Vol. 20. No. 5, pp. 294-299, 2011. https://doi.org/10.5369/JSST.2011.20.5.294