• 제목/요약/키워드: Chemical product

검색결과 2,819건 처리시간 0.032초

HBr Formation from the Reaction between Gas-phase Bromine Atom and Vibrationally Excited Chemisorbed Hydrogen Atoms on a Si(001)-(2 X1) Surface

  • Ree, J.;Yoon, S.H.;Park, K.G.;Kim, Y.H.
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권8호
    • /
    • pp.1217-1224
    • /
    • 2004
  • We have calculated the probability of HBr formation and energy disposal of the reaction exothermicity in HBr produced from the reaction of gas-phase bromine with highly covered chemisorbed hydrogen atoms on a Si (001)-(2 ${\times}$1) surface. The reaction probability is about 0.20 at gas temperature 1500 K and surface temperature 300 K. Raising the initial vibrational state of the adsorbate(H)-surface(Si) bond from the ground to v = 1, 2 and 3 states causes the vibrational, translational and rotational energies of the product HBr to increase equally. However, the vibrational and translational motions of product HBr share most of the reaction energy. Vibrational population of the HBr molecules produced from the ground state adsorbate-surface bond ($v_{HSi}$ =0) follows the Boltzmann distribution, but it deviates seriously from the Boltzmann distribution when the initial vibrational energy of the adsorbate-surface bond increases. When the vibration of the adsorbate-surface bond is in the ground state, the amount of energy dissipated into the surface is negative, while it becomes positive as vHSi increases. The energy distributions among the various modes weakly depends on surface temperature in the range of 0-600 K, regardless of the initial vibrational state of H(ad)-Si(s) bond.

GMA-Functionalized Reactive Stabilizer for Polymerization of Methyl Methacrylate in Supercritical $CO_2$: Effect of Stabilizer, Initiator and Monomer Concentrations

  • Han, Sang-Hun;Park, Kyung-Kyu;Lee, Sang-Ho
    • Macromolecular Research
    • /
    • 제16권2호
    • /
    • pp.120-127
    • /
    • 2008
  • Glycidyl methacrylate linked poly(dimethylsiloxane) (GMA-PDMS) was synthesized and used as a stabilizer for the dispersion polymerization of methyl methacrylate (MMA) in supercritical $CO_2$. This study examined the effect of the concentrations of the stabilizer, 2,2'-azobisisobutyronitrile (AIBN) initiator, and MMA on the yield, molecular weight, and morphology of the poly(methyl methacrylate) (PMMA) product. PMMA was obtained in 94,6% yield using only 0,87 wt% GMA-PDMS, When the AIBN concentration was increased from 025 to 1.06 wt%, the molecular weight and particle size of the PMMA decreased from 56,600 to 21,600 and from 4.1 to $2.7{\mu}m$, whereas the particle size distribution increased from 1.3 to 1.9. The $M_n$ of the PMMA product ranged from 41,600 and 55,800 under typical polymerization conditions. The PMMA particle diameter ranged from 1.8 to $11.0{\mu}m$ and the particle size distribution ranged from 1.4 to 1.8.

Frequency response of film casting process

  • Hyun, Jae-Chun;Lee, Joo-Sung;Jung, Hyun-Wook
    • Korea-Australia Rheology Journal
    • /
    • 제15권2호
    • /
    • pp.91-96
    • /
    • 2003
  • The sensitivity of the product to the ongoing sinusoidal disturbances of the process has been investigated in the film casting of viscoelastic polymer fluids using frequency response analysis. As demonstrated for fiber spinning process (Jung et al., 2002; Devereux and Denn, 1994), this frequency response analysis is useful for examining the process sensitivity and the stability of extensional deformation processes including film casting. The results of the present study reveal that the amplification ratios or gains of the process/product variables such as the cross-sectional area at the take-up to disturbances exhibit resonant peaks along the frequency regime as expected for the systems having hyperbolic characteristics with spilt boundary conditions (Friedly, 1972). The effects on the sensitivity results of two important parameters of film casting, i.e., the fluid viscoelasticity and the aspect ratio of the casting equipment have been scrutinized. It turns out that depending on the extension thinning or thickening nature of the fluid, increasing viscoelasticity results in enlargement or reduction of the sensitivity, respectively. As regards the aspect ratio, it has been found that an optimum value exists making the system least sensitive. The present study also confirms that the frequency response method produces results that corroborate well those by other methods like linear stability Analysis and transient solutions response. (Iyengar and Co, 1996; Silagy et al., 1996; Lee and Hyun, 2001).

Uranium thermochemical cycle used for hydrogen production

  • Chen, Aimei;Liu, Chunxia;Liu, Yuxia;Zhang, Lan
    • Nuclear Engineering and Technology
    • /
    • 제51권1호
    • /
    • pp.214-220
    • /
    • 2019
  • Thermochemical cycles have been predominantly used for energy transformation from heat to stored chemical free energy in the form of hydrogen. The thermochemical cycle based on uranium (UTC), proposed by Oak Ridge National Laboratory, has been considered as a better alternative compared to other thermochemical cycles mainly due to its safety and high efficiency. UTC process includes three steps, in which only the first step is unique. Hydrogen production apparatus with hectogram reactants was designed in this study. The results showed that high yield hydrogen was obtained, which was determined by drainage method. The results also indicated that the chemical conversion rate of hydrogen production was in direct proportion to the mass of $Na_2CO_3$, while the solid product was $Na_2UO_4$, instead of $Na_2U_2O_7$. Nevertheless the thermochemical cycle used for hydrogen generation can be closed, and chemical compounds used in these processes can also be recycled. So the cycle with $Na_2UO_4$ as its first reaction product has an advantage over the proposed UTC process, attributed to the fast reaction rate and high hydrogen yield in the first reaction step.

An analytical model to decompose mass transfer and chemical process contributions to molecular iodine release from aqueous phase under severe accident conditions

  • Giedre Zablackaite;Hiroyuki Shiotsu;Kentaro Kido;Tomoyuki Sugiyama
    • Nuclear Engineering and Technology
    • /
    • 제56권2호
    • /
    • pp.536-545
    • /
    • 2024
  • Radioactive iodine is a representative fission product to be quantified for the safety assessment of nuclear facilities. In integral severe accident analysis codes, the iodine behavior is usually described by a multi-physical model of iodine chemistry in aqueous phase under radiation field and mass transfer through gas-liquid interface. The focus of studies on iodine source term evaluations using the combination approach is usually put on the chemical aspect, but each contribution to the iodine amount released to the environment has not been decomposed so far. In this study, we attempted the decomposition by revising the two-film theory of molecular-iodine mass transfer. The model involves an effective overall mass transfer coefficient to consider the iodine chemistry. The decomposition was performed by regarding the coefficient as a product of two functions of pH and the overall mass transfer coefficient for molecular iodine. The procedure was applied to the EPICUR experiment and suppression chamber in BWR.

산업부산물을 활용한 지반고화재의 환경안정성 평가 (The Assessment for Environmental Stabilization of Ground Solidification Materials using Industrial y-product)

  • 이영원;문경주
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 춘계 학술논문 발표대회
    • /
    • pp.116-117
    • /
    • 2014
  • This study is to environmental safety assessment of ground solidification materials using industrial by-products. also, physical and chemical properties were investigated. as a result, compared to conventional cement the survival rates are capable, was judged to be possible utilizing of ECO-friendly ground solidification materials.

  • PDF

농업부산물의 혼화재료로써 사용가능성에 관한 연구 (The Research on Possibility as Mineral Admixture of Agriculture by-product)

  • 정의창
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2019년도 춘계 학술논문 발표대회
    • /
    • pp.178-179
    • /
    • 2019
  • The purpose of this study was to investigate the possibility as mineral admixture of agriculture by-product. XRD and XRF analysis were performed on rice straw ashes at various combustion temperatures to identify chemical compositions. Also to evaluate properties of pozzolanic reaction, pH change method was tested.

  • PDF

Chemical Investigation of the Constitutive Phenolics of Ailanthus altissima; The Structure of a New Flavone Glycoside Gallate

  • Barakat, Heba H.
    • Natural Product Sciences
    • /
    • 제4권3호
    • /
    • pp.153-157
    • /
    • 1998
  • The aqueous ethanolic leaf extract of Ailanthus altissima was found to contain the new natural product, $luteolin\;7-O-{\beta}-(6"-galloylglucopyranoside)$, 13, along with fourteen known phenolic metabolites (1-12, 14 and 15). Structures of all compounds (1-15) were established by conventional methods of analysis and confirmed by FAB-MS, $^1H-\;and\;^{13}C-NMR$ spectral analysis.

  • PDF

Anatomical Proportions and Chemical and Amino Acid Composition of Common Shrimp Species in Central Vietnam

  • Ngoan, L.D.;Lindberg, J.E.;Ogle, B.;Thomke, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제13권10호
    • /
    • pp.1422-1428
    • /
    • 2000
  • This investigation was conducted to evaluate the shrimp flesh (SF) and shrimp by-product (SB) of the most abundant shrimp species (Metapenaeus affinis, Penaeus semisulcatus and Penaeus monodon) caught in Central Vietnam, with the emphasis on yield, gross and amino acid (AA) composition and effect of heat treatment. The results showed that the mean edible SF and SB (head and shells with tail) yields of the three shrimp species averaged 56.7 and 43.3%, respectively, of the total wet body weight, with the M. affinis generating the highest by-product yield (45.7%) and P. semisulcatus (40.6%) the lowest. Significant differences in dry matter (DM), crude protein (CP) and ash content were found between SF and SB. The DM content of SF (21.5%) was lower than of SB (24.9%) and the ash content (on a DM basis) of the SB in all shrimp species was more than three times that of the SF (p<0.05), whereas the CP content was almost twice as high in the SF as compared with the SB (p<0.05). The SB of the three species contained (on a DM basis) between 44.0 and 49.8% CP (p<0.05) and between 13.5 and 18.1% chitin (p<0.05). The Ca content of SB differed also between species (p<0.05). On average, the sum of AA in SB corresponded to 89.3% of the CP and essential AA accounted for about 50% of the total AA. The most abundant AA were arginine, aspartic and glutamic acids, which accounted for 33% of the total AA. Minor, but significant differences in some AA concentrations of SB between species were observed (p<0.05). With the exception of the DM and ether extract content, all other chemical constituents of entire shrimp, SF and SB were not significantly affected by heat treatment (p>0.05).

PP의 열분해에 의한 액화 특성 (Liquefaction Characteristics of PP by Pyrolysis)

  • 유홍정;이봉희;박수열
    • 한국응용과학기술학회지
    • /
    • 제19권4호
    • /
    • pp.258-264
    • /
    • 2002
  • Pyrolysis of polypropylene(PP) Was performed to find the effects of the pyrolysis temperature(425, 450, 475 and $500^{\circ}C$) and the pyrolysis time(35, 50 and 65minutes), respectively. Conversion and liquid yield obtained during PP pyrolysis continuously increased with the pyrolysis temperature( up to $500^{\circ}C$) and the pyrolysis time(up to 65minutes), especially these were more sensitive to the pyrolysis time at $425^{\circ}C$ than other pyrolysis temperatures. Each liquid product formed during the pyrolysis was classified into gasoline, kerosene, light oil and wax according to the distillation temperature based on the petroleum product quality standard of Korea Petroleum Quality Inspection Institute. The liquid products of PP pyrolysis up to $450^{\circ}C$ were almost same fractions($26{\pm}3$wt.% gasoline, $20{\pm}2$wt.% kerosene and $23{\pm}2$wt.% light oil) except wax($3{\sim}13$wt.%). On the other hand, the pyrolysis of PP from $475^{\circ}C$ to $500^{\circ}C$ produced $26{\pm}3$wt.% wax, $24{\pm}1$wt.% gasoline, $18{\pm}1$wt.% kerosene and $16{\pm}1$wt.% light oil. After all, the main liquid product changed from gasoline to wax with increasing pyrolysis temperature.