• Title/Summary/Keyword: Chemical modification of cellulose

Search Result 27, Processing Time 0.022 seconds

Recent Developments in Natural Fiber Reinforced Composites (천연섬유보강 복합재료의 최근 연구 개발)

  • Mirza, Foisal Ahmed;Afsar, Ali Md.;Kim, Byung-Sun;Song, Jong-Il
    • Composites Research
    • /
    • v.22 no.4
    • /
    • pp.41-49
    • /
    • 2009
  • Natural fiber reinforced composites are emerging as low-cost, lightweight, recyclable, and eco-friendly materials. These are biodegradable and non-abrasive. Due to eco-friendly and biodegradable characteristics of natural fibers, they are being considered as potential candidates to replace the conventional fibers. The chemical, mechanical, and physical properties of natural fibers have distinct features depending upon the cellulose content of the fibers which varies from fiber to fiber. The mechanical properties of composites are influenced mainly by the adhesion between matrix and fibers. Several chemical and physical modification methods of fiber surface were incorporated to improve the tiber-matrix adhesion resulting in the enhancement of mechanical properties of the composites. This paper outlines the works reported on natural tiber reinforced composites with special reference to the type of fibers, polymer matrix, processing techniques, treatment of fibers, and fiber-matrix interface.

Chemical, Mechanical, Thermal, and Colorimetric Features of the Thermally Treated Eucalyptus grandis Wood Planted in Brazil

  • SCHULZ, Henrique Romer;ACOSTA, Andrey Pereira;BARBOSA, Kelvin Techera;JUNIOR, Mario Antonio Pinto da Silva;GALLIO, Ezequiel;DELUCIS, Rafael de Avila;GATTO, Darci Alberto
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.3
    • /
    • pp.226-233
    • /
    • 2021
  • This article aimed at thermally treating and charactering the Eucalyptus grandis wood under three different temperatures. For this, pristine eucalypt samples were treated by heating in a laboratory oven at 160 ℃, 200 ℃ and 240 ℃, always for 2 h. Treatment parameters (based on weight percentage loss and specific gravity), as well as mechanical (by hardness tests), chemical (by infrared spectroscopy), thermal (by thermogravimetry), and colorimetric (by CIELab method) features were evaluated. Compared to the pristine ones, the treated woods have there was a drop in apparent density at 12 % and consecutively greater thermal stability which is probably related to a previous partial degradation of some major amorphous components (namely cellulose, hemicellulose and lignin), as suggested by the treatment parameters and infrared spectra. Besides of that, the higher the temperature treatment, the higher the loss in surface hardness and the higher the colour darkening.

Assessment of organic matter biodegradation and physico-chemical parameters variation during co-composting of lignocellulosic wastes with Trametes trogii inoculation

  • Fersi, Mariem;Mbarki, Khadija;Gargouri, Kamel;Mechichi, Tahar;Hachicha, Ridha
    • Environmental Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.670-679
    • /
    • 2019
  • Lignin complexity molecule makes its biodegradation difficult during lignocellulosic wastes composting. So, the improvement of its biodegradation has usually been considered as an objective. This study aimed to determine the impact of Trametes trogii inoculation on organic matter and particularly on lignin and cellulose during green wastes co-composting with olive mill waste water sludge and coffee grounds. Three types of heaps (H1, H2 and H3) were investigated during 180 d. H3 and H2 were inoculated at the beginning of the process (t0) and 120 d later (t120), respectively while H1 was the control. Results showed the absence of pH stabilization in H3 during the first month. Also, in this period we observed a faster degradation of some easily available organic matter in H3 than in the other heaps. After 120 d, a better cellulose decomposition (25.28%) was noticed in H3 than in H1 and H2 (16%). Inoculation during the second fermentation phase induced supplementary lignin degradation in H2 with a percentage of 35% against 23 and 26% for H1 and H3, respectively. For all the runs, a Fourier Transform Infrared analysis showed aliphatic groups' decrease, OH groups' increase and lignin structural modification.

Biological Pretreatment of Softwood Pinus densiflora by Three White Rot Fungi

  • Lee, Jae-Won;Gwak, Ki-Seob;Park, Jun-Yeong;Park, Mi-Jin;Choi, Don-Ha;Kwon, Mi;Choi, In-Gyu
    • Journal of Microbiology
    • /
    • v.45 no.6
    • /
    • pp.485-491
    • /
    • 2007
  • The effects of biological pretreatment on the Japanese red pine Pinus densiflora, was evaluated after exposure to three white rot fungi Ceriporia lacerata, Stereum hirsutum, and Polyporus brumalis. Change in chemical composition, structural modification, and their susceptibility to enzymatic saccharification in the degraded wood were analyzed. Of the three white rot fungi tested, S. hirsutum selectively degraded the lignin of this sortwood rather than the holocellulose component. After eight weeks of pretreatment with S. hirsutum, total weight loss was 10.7%, while lignin loss was the highest at 14.52% among the tested samples. However, holocellulose loss was lower at 7.81 % compared to those of C. lacerata and P. brumalis. Extracelluar enzymes from S. hirsutum showed higher activity of ligninase and lower activity of cellulase than those from other white rot fungi. Thus, total weight loss and changes in chemical composition of the Japanese red pine was well correlated with the enzyme activities related with lignin- and cellulose degradation in these fungi. Based on the data obtained from analysis of physical characterization of degraded wood by X-ray Diffractometry (XRD) and pore size distribution, S. hirsutum was considered as an effective potential fungus for biological pretreatment. In particular, the increase of available pore size of over 120 nm in pretreated wood powder with S. hirsutum made enzymes accessible for further enzymatic saccharification. When Japanese red pine chips treated with S. hirsutum were enzymatically saccharified using commercial enzymes (Cellulclast 1.5 L and Novozyme 188), sugar yield was greatly increased (21.01 %) compared to non-pre treated control samples, indicating that white rot fungus S. hirsutum provides an effective process in increasing sugar yield from woody biomass.

Current Research on Nanocellulose-Reinforced Nanocomposites (Nanocellulose를 이용한 나노복합재의 최근 연구 동향)

  • Cho, Mi-Jung;Park, Byung-Dae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.587-601
    • /
    • 2010
  • This review attempted to overview characteristics of nanocellulose from various sources, its isolation methods, and properties of nanocellulose-based nanocomposites. Currently, nanocelluloses could be obtained from a variety of cellulose sources, including wood pulp, tunicate, bacterial cellulose etc., and are isolated by various ways such as chemical, physical, or biological methods. The length and width of nanocellulose is in the range of 100~300 nm long and 5~50 nm wide although characteristics of nanocellulose shows a wide variability, depending on sources and isolation method. Nanocellulose is also being used as a reinforcement in the nanocomposites via various methods. Many water soluble polymers were reinforced by the incorporation of nanocellulose, which significantly improves tensile and storage moduli of the nanocomposites. In order to be used for hydrophobic polymers, the surface of nanocellulose was modified. Even though there is a significant progress in the utilization of nanocellulose as a reinforcement of polymers, further research is required to find a niche market of nanocellulose-reinforced nanocomposites. In addition, isolation methods of producing the nanocellulose in a large quantity for commercial applications should be developed to extend the application of nanocellulose-based bio-nanocomposites in future.

Purification and Characterization of Endoinulase from Streptomyces sp. S56 (Streptomyces sp. S56이 생산하는 Endoinulase의 정제 및 특성)

  • 김수일;하영주
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.5
    • /
    • pp.551-558
    • /
    • 1992
  • The extracellular endoinulase from Streptomyces sp. 556 was purified and characterized, The culture broth was fractionated by ammonium sulfate saturation followed by DEAE-cellulose column chromatography and 5ephadex G-200 gel filtration, The ultimately purified fraction revealed a single band in 7.5% polyacrylamide gel electropherogram. The purified enzyme showed the maximal activity at pH 5.5-6.0 and $50^{\circ}C$, but lost 93% of inulase activity after 30 min incubation at $55^{\circ}C$ . The essen.tial amino acid residue for catalytic activity appeared to be tryptophan. This endo inulase was activated by $Mn^{2+}$, whereas inactivated by $Ag^{+}$, $Hg^{+}$, $Cu^{2+}$, $Zn^{2+}$, $Fe^{3+}$ and $Mo^{6+}$ EDTA and 8-hydroxyquinoline inhibited the enzyme so that the enzyme was considered to be a metalloenzyme. The Km value for inulin was 0.287 mM, and no invertase or $\alpha$-glucosidase activity was found in the enzyme.

  • PDF

Structural Analysis of Milled Wood Lignins Isolated From Aspen Wood (Populus tremuloides L.) Biotreated by Ceriporiopsis subvermispora (Ceriporiopsis subvermispora 처리에 의한 아스펜 목재 리그닌의 구조 변화)

  • Choi, Joon-Weon;Moon, Sung-Hee;Ahn, Sye-Hee;Choi, Don-Ha;Paik, Ki-Hyun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.6 s.134
    • /
    • pp.79-86
    • /
    • 2005
  • Aspen wood (Populus tremuloides, L.) was biotreated with Ceriporiopsis subvermispora for 1, 2, 4, and 6 weeks to observe the physical/chemical modification of wood components. Milled wood lignins (MWLs) isolated from each decayed wood were analyzed by gel permeation chromatography (GPC) and nitrobenzene oxidation (NBO). As fungal treatment was progressed, lignin contents continuously decreased up to 20% after 6-week treatment. The lignin polymer could be fragmented to low-molecular phenolics, which make an enhancement of alkali solubility. Holocellulose contents were not affected severely during the period of fungal treatment, only reduction of 5~6% compared to the control. Xylose contents were decreased gradually from 23.4% to 18% after 6 weeks, whereas alpha-cellulose remained almost unchanged. Gel permeation chromatography (GPC) indicates that molecular weight of lignin undergoes a slight decrement for 4 weeks of fungal treatment. Nitrobenzene oxidation revealed that total yield of NBO products of lignins were lowered ca 20% after fungal treatment. Sum of syringaldehyde and syringic acid are remarkably decreased. However, increment of sum of vanillin and vanillic acid was surprisingly observed. These results work as indirect evidence that a specific lignolytic reaction, maybe selective demethoxylaytion of S-lignin, can occur during fungal treatment of aspen wood by C. subvermispora.