DOI QR코드

DOI QR Code

Assessment of organic matter biodegradation and physico-chemical parameters variation during co-composting of lignocellulosic wastes with Trametes trogii inoculation

  • Fersi, Mariem (Algae Biotechnology Unit (UBA), National Engineering School of Sfax (ENIS), Biological Engineering department) ;
  • Mbarki, Khadija (Environmental Engineering and Eco Technology Laboratory, National Engineering School of Sfax (ENIS), Geological Engineering department) ;
  • Gargouri, Kamel (Laboratory of olive and fruit trees productivity improvement, olive institute) ;
  • Mechichi, Tahar (Laboratory of Enzymatic Engineering and Microbiology (LGEM), National Engineering School of Sfax (ENIS), Biological Engineering department) ;
  • Hachicha, Ridha (Algae Biotechnology Unit (UBA), National Engineering School of Sfax (ENIS), Biological Engineering department)
  • Received : 2018.09.27
  • Accepted : 2019.01.11
  • Published : 2019.12.30

Abstract

Lignin complexity molecule makes its biodegradation difficult during lignocellulosic wastes composting. So, the improvement of its biodegradation has usually been considered as an objective. This study aimed to determine the impact of Trametes trogii inoculation on organic matter and particularly on lignin and cellulose during green wastes co-composting with olive mill waste water sludge and coffee grounds. Three types of heaps (H1, H2 and H3) were investigated during 180 d. H3 and H2 were inoculated at the beginning of the process (t0) and 120 d later (t120), respectively while H1 was the control. Results showed the absence of pH stabilization in H3 during the first month. Also, in this period we observed a faster degradation of some easily available organic matter in H3 than in the other heaps. After 120 d, a better cellulose decomposition (25.28%) was noticed in H3 than in H1 and H2 (16%). Inoculation during the second fermentation phase induced supplementary lignin degradation in H2 with a percentage of 35% against 23 and 26% for H1 and H3, respectively. For all the runs, a Fourier Transform Infrared analysis showed aliphatic groups' decrease, OH groups' increase and lignin structural modification.

Keywords

References

  1. ANGED (Agence Nationale de GEstion des Dechets). Rapport sur la digestion des dechets solides en Tunisie. Eschborn; Publie par Deutsche Gesellschaft fur Internationale Zusammenarbeit (GIZ) GmbH; 2014.
  2. Bustamante MA, Restrepo AP, Alburquerque JA, et al. Recycling of anaerobic digestates by composting: Effect of the bulking agent used. J. Clean. Prod. 2013;47:61-69. https://doi.org/10.1016/j.jclepro.2012.07.018
  3. Rawoteea SA, Mudhoo A, Kumar S. Co-composting of vegetable wastes and carton: Effect of carton composition and parameter variations. Bioresour. Technol. 2017;227:171-178. https://doi.org/10.1016/j.biortech.2016.12.019
  4. Gabhane J, William SP, Bidyadhar R, et al. Additives aided composting of green waste: effects on organic matter degradation compost maturity and quality of the finished compost. Bioresour. Technol. 2012;114:382-388. https://doi.org/10.1016/j.biortech.2012.02.040
  5. Francou C, Lineres M, Derenne S, Le Villio-Poitrenaud M, Houot S. Influence of green waste biowaste and paper-cardboard initial ratios on organic matter transformations during composting. Bioresour. Technol. 2008;99:8926-8934. https://doi.org/10.1016/j.biortech.2008.04.071
  6. Belyaeva ON, Haynes RJ, Sturm EC. Chemical physical and microbial properties and microbial diversity in manufactured soils produced from co-composting green waste and biosolids. Waste Manage. 2012;32:2248-2257. https://doi.org/10.1016/j.wasman.2012.05.034
  7. Zhang L, Sun X. Improving green waste composting by addition of sugarcane bagasse and exhausted grape marc. Bioresour. Technol. 2016;218:335-343. https://doi.org/10.1016/j.biortech.2016.06.097
  8. Gong X, Li S, Sun X, Zhang L, Zhang T, Wei L. Maturation of green waste compost as affected by inoculation with the white-rot fungi Trametes versicolor and Phanerochaete chrysosporium. Environ. Technol. 2016;38:872-879. https://doi.org/10.1080/09593330.2016.1214622
  9. Haddadin MSY, Haddadin J, Arabiyat OI, Hattar B. Biological conversion of olive pomace into compost by using Trichoderma harzianum and Phanerochaete chrysosporium. Bioresour. Technol. 2009;100:4773-4782. https://doi.org/10.1016/j.biortech.2009.04.047
  10. Wang HY, Fan BQ, Hu QX, Yin ZW. Effect of inoculation with Penicillium expansum on the microbial community and maturity of compost. Bioresour. Technol. 2011;102:11189-11193. https://doi.org/10.1016/j.biortech.2011.07.044
  11. Awasthi MK, Pandey AK, Khan J, Bundela PS, Wong JWC, Selvam A. Evaluation of thermophilic fungal consortium for organic municipal solid waste composting. Bioresour. Technol. 2014;168:214-221. https://doi.org/10.1016/j.biortech.2014.01.048
  12. Zhang L, Sun X, Tian Y, Gong X. Effects of brown sugar and calcium superphosphate on the secondary fermentation of green waste. Bioresour. Technol. 2013;131:68-75. https://doi.org/10.1016/j.biortech.2012.10.059
  13. Zouari-Mechichi H, Mechichi T, Dhouib A, Sayadi S, Martinez AT, Jesus Martinez M. Laccase purification and characterization from Trametes trogii isolated in Tunisia: Decolorization of textile dyes by the purified enzyme. Enzyme Microbiol. Technol. 2006;39:141-148. https://doi.org/10.1016/j.enzmictec.2005.11.027
  14. Herkommerova K, Dostal J, Pichova I. Decolorization and detoxification of textile wastewaters by recombinant Myceliophthora thermophila and Trametes trogii laccases. Biotechnology 2018;8:505.
  15. Smaoui Y, Fersi M, Mechichi M, Sayadi S, Bouzid J. A new approach for detoxification of landfill leachate using Trametes trogii. Environ. Eng. Res. 2019;24:144-149. https://doi.org/10.4491/eer.2018.014
  16. Retes-Pruneda JL, Davila-Vazquez G, Medina-Ramirez I, et al. High removal of chemical and biochemical oxygen demand from tequila vinasses by using physicochemical and biological methods. Environ. Technol. 2014;35:1773-1784. https://doi.org/10.1080/09593330.2014.882960
  17. Gillet R. Traite de Gestion des Dechets Solides et son application aux pays en voie de developpement: [Solid Waste Management and its application in developing countries] Vol. 1, Programme minimum de gestion des ordures menageres et des dechets assimiles [Minimum program for the management of household and similar wastes]. 1985; p. 23-34.
  18. Zeng GM, Yu M, Chen Y, et al. Effects of inoculation with Phanerochaete chrysosporium at various time points on enzyme activities during agricultural waste composting. Bioresour. Technol. 2009;101:222-227. https://doi.org/10.1016/j.biortech.2009.08.013
  19. Brink RH, Dubach P, Lynch DL. Measurement of carbohydrates in soil hydrolyzates with anthrone. Soil Sci. 1960;89:157-166. https://doi.org/10.1097/00010694-196003000-00006
  20. AFNOR. Methode de determination de la CB (Indice d'Insoluble dit Cellulosique) par la methode de Weende. February 1977; NF V03-040.
  21. Asses N, Farhat A, Cherif S, Hamdi M, Bouallagui H. Comparative study of sewage sludge co-composting with olive mill wastes or green residues: Process monitoring and agriculture value of the resulting composts. Process Saf. Environ. Prot. 2018;114:25-35. https://doi.org/10.1016/j.psep.2017.12.006
  22. Bernal MP, Alburquerque JA, Moral R. Composting of animal manures and chemical criteria for compost maturity assessment. Bioresour. Technol. 2009;100:5444-5453. https://doi.org/10.1016/j.biortech.2008.11.027
  23. Beaugrand J, Cronier D, Debeire P, Chabbert B. Arabinoxylan and hydroxycinnamate content of wheat bran in relation to endoxylanase susceptibility. J. Cereal Sci. 2004;40:223-230. https://doi.org/10.1016/j.jcs.2004.05.003
  24. Hachicha S, Sellami F, Cegarra J, et al. Biological activity during co-composting of sludge issued from the OMW evaporation ponds with poultry manure - Physico-chemical characterization of the processed organic matter. J. Hazard. Mater. 2009;162:402-409. https://doi.org/10.1016/j.jhazmat.2008.05.053
  25. Khalil A, Domeizel M, Prudent P. Monitoring of green waste composting process based on redox potential. Bioresour. Technol. 2008;99:6037-6045. https://doi.org/10.1016/j.biortech.2007.11.043
  26. El Fels L, Lemee L, Ambles A, Hafidi M. Identification and biotransformation of lignin compounds during co-composting of sewage sludge-palm tree waste using pyrolysis-GC/MS. Int. Biodeterior. Biodegrad. 2014;92:26-35. https://doi.org/10.1016/j.ibiod.2014.04.001
  27. Shilev S, Naydenov M, Vancheva V, Aladjadjiyan A. Utilization of by-products and treatment of waste in the food industry. New York: Springer; 2007.
  28. Zhu NW. Composting of high moisture content swine manure with corncob in a pilot-scale aerated static bin system. Bioresour. Technol. 2006;97:1870-1875. https://doi.org/10.1016/j.biortech.2005.08.011
  29. Lopez JM, Vargas-Garcia CM, Suarez-Estrella F, Moreno J. Biodelignification and humification of horticultural plant residues by fungi. Int. Biodeterior. Biodegrad. 2006;57:24-30. https://doi.org/10.1016/j.ibiod.2005.10.005
  30. Annabi M. Stabilisation de la structure d'un sol limoneux par des apports de composts d'origine urbaine Relation avec les caracteristiques de leur matiere organique [silty soil structure Stabilization by urban composts inputs. relationship with their organic matter characteristics] [dissertation]. Paris-Grignon: Univ. of Paris-Saclay; 2005.
  31. Amir S, Abouelwafa R, Medich A, et al. PLFAs of the microbial communities in composting mixtures of agro-industry sludge with different proportions of household waste. Int. Biodeterior. Biodegrad. 2010;64:614-621. https://doi.org/10.1016/j.ibiod.2010.01.012
  32. Tuomela M, Vikman M, Hatakka A, Itaavaara M. Biodegradation of lignin in a compost environment. Bioresour. Technol. 2000;72:169-183. https://doi.org/10.1016/S0960-8524(99)00104-2
  33. Metzger LM, Mustin A, Blouet M, Benoit M, Koutaba. Etude prealable a l'elaboration d'un programme de recherche europeen pour l'etude des choix des matieres premieres des procedes de compostage et des usages agricoles des composts. Pol d'Aspach- SADEF; 2002.
  34. Dias BO, Silva CA, Higashikawa FS, Roig A, Sanchez-Monedero MA. Use of biochar as bulking agent for the composting of poultry manure: Effect on organic matter degradation and humification. Bioresour. Technol. 2010;101:1239-1246. https://doi.org/10.1016/j.biortech.2009.09.024
  35. Eklind Y, Kirchmann H. Composting and storage of organic household waste with different litter amendments. I: Carbon turnover. Bioresour. Technol. 2000;74:115-124. https://doi.org/10.1016/S0960-8524(00)00004-3
  36. Burdon J. Are the traditional concepts of the structures of humic substances realistic? Soil Sci. 2001;166:752-769. https://doi.org/10.1097/00010694-200111000-00004
  37. El Fels L, Zamama M, El Asli A, Hafidi M. Assessment of biotransformation of organic matter during co-composting of sewage sludge-lignocelullosic waste by chemical, FTIR analyses, and phytotoxicity tests. Int. Biodeterior. Biodegrad. 2014;87:128-137. https://doi.org/10.1016/j.ibiod.2013.09.024
  38. Becker R, Hanner GD. Carbohydrates composition of cereal grains. In: Handbook of cereal science and technology. Lorenz KJ, Kulp K, eds. New York: CRC Press; 2000. p. 496.
  39. Belderok B. Developments in bread-making processes. Plant Food. Hum. Nutr. 2000;55:1-14. https://doi.org/10.1023/A:1008199314267
  40. Inbar Y, Hadar Y, Chen Y. Recycling of cattle manure: The composting process and characterization of maturity. J. Environ. Qual. 1993;22:857-663. https://doi.org/10.2134/jeq1993.00472425002200040032x
  41. Filippi C, Bedini S, Levi-minzi R, Cardelli R, Saviozzi A. Co-composting of olive oil mill by-products: Chemical and microbiological evaluations. Appl. Microbiol. Biotechnol. 2002;10:63-71.
  42. Zenjari B, El Hajjouji H, Ait Baddi G, et al. Eliminating toxic compounds by composting olive mill wastewater-straw mixtures. J. Hazard. Mater. 2006;138:433-437. https://doi.org/10.1016/j.jhazmat.2006.05.071
  43. Alkoaik F, Ghaly AE. Influence of dairy manure addition on the biological and thermal kinetics of composting of greenhouse tomato plant residues. Waste Manage. 2006;26:902-913. https://doi.org/10.1016/j.wasman.2005.11.023
  44. Alburquerque JA, Gonzalvez D, Garcia D, Cegarra J. Effects of bulking agents on the composting of "alperujo" the solid by-product of the two-phase centrifugation method for olive oil extraction. Process Biochem. 2006;41:127-132. https://doi.org/10.1016/j.procbio.2005.06.006
  45. Francou C. Stabilisation de la matiere organique au cours du compostage de dechet urbains: Influence de la nature des dechets et du procede de compostage - Recherche d'indicateurs pertinents [organic matter stabilization during composting of urban waste: Influence of the waste nature and the composting process - Research of relevant indicators] [dissertation]. Paris-Grigon: Univ. of Paris-Saclay; 2003.
  46. Houot S. Stabilisation des matieres organiques au cours du compostage : Lien avec les effets observes [organic matter stabilization during composting: link with observed effects]. In: Seminaire Sols 10 Centre Armoricain de Recherche en Environnement; 10 February 2005; Rennes. p. 59.
  47. Gonzalez-Perez JA, Gonzalez-Vila FJ, Almendros G, Knicker H. The effect of fire on soil organic matter - A review. Environ. Int. 2004;30:855-870. https://doi.org/10.1016/j.envint.2004.02.003
  48. Poirier V. La degradation biochimique de la lignine. Revue de litterature [lignin biochemical degradation. Literature Review]. Abitibi-Temiscamingue: Univ. of Quebec; 2004.
  49. Filley TR. In: Goodell B, Nicholas DD, Schultz TP. Wood deterioration and preservation: Advances in our changing world. ACS Symposium Series. Washington D.C.; American Chemical Society; 2003. p. 119-139.

Cited by

  1. Microbes as vital additives for solid waste composting vol.6, pp.2, 2019, https://doi.org/10.1016/j.heliyon.2020.e03343
  2. Waste Willow-Bark from Salicylate Extraction Successfully Reused as an Amendment for Sewage Sludge Composting vol.13, pp.12, 2021, https://doi.org/10.3390/su13126771
  3. Carbon Dynamics of Fruit and Vegetable Wastes and Biodegradable Municipal Waste Compost-Amended Oxisol vol.13, pp.19, 2019, https://doi.org/10.3390/su131910869