DOI QR코드

DOI QR Code

Chemical, Mechanical, Thermal, and Colorimetric Features of the Thermally Treated Eucalyptus grandis Wood Planted in Brazil

  • Received : 2020.12.04
  • Accepted : 2021.04.01
  • Published : 2021.05.25

Abstract

This article aimed at thermally treating and charactering the Eucalyptus grandis wood under three different temperatures. For this, pristine eucalypt samples were treated by heating in a laboratory oven at 160 ℃, 200 ℃ and 240 ℃, always for 2 h. Treatment parameters (based on weight percentage loss and specific gravity), as well as mechanical (by hardness tests), chemical (by infrared spectroscopy), thermal (by thermogravimetry), and colorimetric (by CIELab method) features were evaluated. Compared to the pristine ones, the treated woods have there was a drop in apparent density at 12 % and consecutively greater thermal stability which is probably related to a previous partial degradation of some major amorphous components (namely cellulose, hemicellulose and lignin), as suggested by the treatment parameters and infrared spectra. Besides of that, the higher the temperature treatment, the higher the loss in surface hardness and the higher the colour darkening.

Keywords

References

  1. Acosta, A.P., Beltrame, R., Missio, A.L., de Avila Delucis, R., Gatto, D.A. 2020. Juvenile and mature woods from pine subjected to in situ polymerization with furfuryl alcohol. Wood Material Science & Engineering 1-6. doi:10.1080/17480272.2020.1810118.
  2. ASTM International. 2014. D 143-94: Standard methods of testing small clear specimens of timber. West Conshohocken, PA, USA. Acess in: https://www.astm.org/DATABASE.CART/HISTORICAL/D143-94.htm.
  3. ASTM International. 2014. D 2017-05: Standard test method of accelerated laboratory test of natural decay resistance of wood. West Conshohocken, PA, USA. Acess in: https://www.astm.org/DATABASE.CART/WITHDRAWN/D2017.htm.
  4. Cademartori, P.H.G., Missio, A.L., Mattos, B.D., Schneid, E., Gatto, D.A. 2014. Physical and mechanical properties and colour changes of fast-growing Gympie messmate wood subjected to two-step steam-heat treatments. Wood Materials Science and Engineer 9(1): 40-48. https://doi.org/10.1080/17480272.2013.853692
  5. Chang, Y.-S., Han, Y., Eon, C.-D., Chun, S., Yeo, H. 2019. Hygroscopic Property of Heat Treated Yellow Poplar (Liriodendron tulipifera) Wood. Journal of the Korean Wood Science and Technology 47(6): 761-769. https://doi.org/10.5658/wood.2019.47.6.761
  6. Corleto, R., Gaff, M., Niemz, P., Sethy, A.K., Todaro, L., Ditommaso, G., Macku, J. 2020. Effect of thermal modification on properties and milling behaviour of African padauk (Pterocarpus soyauxii Taub.) wood. Journal of Materials Research and Technology 9(4): 9315-9327. https://doi.org/10.1016/j.jmrt.2020.06.018
  7. Delucis, R.D.A., Gatto, D.A., Cademartori, P.H.G.D., Missio, A.L., Schneid, E. 2014. Propriedades fisicas da madeira termorretificada de quatro folhosas. Florestas e Ambiente 21(1): 99-107. https://doi.org/10.4322/floram.2014.008
  8. Gallio, E., Zanatta, P., Ribes, D.D., Lazarotto, M., Gatto, D.A., Beltrame, R. 2018. Fourier transform infrared spectroscopy in treated woods deteriorated by a white rot fungus. Maderas-Ciencia Tecnologia 20(3): 479-488.
  9. Gallio, E., Zanatta, P., Cruz, N.D., Zanol, G.S., Schulz, H.R., Gatto, D.A. 2019. Influencia dos tratamentos de termorretificacao e furfurilacao em propriedades tecnologicas de uma conifera. Revista Materia Rio de Janeiro 24(3): e12424. https://doi.org/10.1590/s1517-707620190003.0739
  10. Gunduz, G., Aydemir, D., Karakas, G. 2009. The effects of thermal treatment on the mechanical properties of wild Pear (Pyrus elaeagnifolia Pall.) wood and changes in physical properties. Materials & Design 30(10): 4391-4395. https://doi.org/10.1016/j.matdes.2009.04.005
  11. Gunduz, G., Korkut, S., Korkut, D.S. 2008. The effects of heat treatment on physical and technological properties and surface roughness of Camiyani Black Pine (Pinus nigra Arn. subsp. pallasiana var. pallasiana) wood. Bioresource technology 99(7): 2275-2280. https://doi.org/10.1016/j.biortech.2007.05.015
  12. He, Z., Wang, Z., Qu, L., Qian, J., Yi, S. 2019. Modeling and simulation of heat-mass transfer and its application in wood thermal modification. Results in Physics 13(10): 2213.
  13. Herrera, R., Arrese, A., Pedro Martinez, P.H., Labidi, J., Ponte, R.L. 2018. Evolution of thermally modified wood properties exposed to natural and artificial weathering and its potential as an element for facades systems. Construction and Building Materials 172: 233-242. https://doi.org/10.1016/j.conbuildmat.2018.03.157
  14. Hubbard, R.M., Stape, J., Ryan, M.G., Almeida, A.C., Rojas, J. 2010. Effects of irrigation on water use and water use efficiency in two fast growing Eucalyptus plantations. Forest Ecology and Management 259(9): 1714-1721. https://doi.org/10.1016/j.foreco.2009.10.028
  15. IBA, 2019. Brazilian Tree Industry: Report 2019. Sao Paulo, Brazil, 80.
  16. IBGE, 2019. The Brazilian Institute of Geography and Statistics (in portuguese). URL: https://sidra.ibge.gov.br/pesquisa/pevs/tabelas. Accessed 27 Nov 2020.
  17. Kang, C.-W., Li, C., Jang, E.-S., Jang, S.-S., Kang, H.-Y. 2018. Changes in Sound Absorption Capability and Air Permeability of Malas (Homalium foetidum) Specimens after High Temperature Heat Treatment. Journal of Korean Wood Science and Technology 46(2): 149-154. https://doi.org/10.5658/WOOD.2018.46.2.149
  18. Kang, C.-W., Jang, E.-S., Jang, S.-S., Cho, J.-I., Kim, N.-H. 2019. Effect of Heat Treatment on the Gas Permeability, Sound Absorption Coefficient, and Sound Transmission Loss of Paulownia tomentosa Wood. Journal of Korean Wood Science and Technology 47(5): 644-654. https://doi.org/10.5658/wood.2019.47.5.644
  19. Kim, J.Y., Hwang, H.S., Kim Y.S., Kim, U.J., Choi, J.W. 2014. Investigation of structural modification and thermal characteristics of lignin after heat treatment. International Journal of Biological Macromolecules 66: 57-65. https://doi.org/10.1016/j.ijbiomac.2014.02.013
  20. Kim, Y.K., Kwon, G.J., Kim, A.R., Lee H.S., Purusatama, B., Lee, S.H., Kang, C.W., Kim N.H. 2018. Effects of Heat Treatment on the Characteristics of Royal Paulownia (Paulownia tomentosa (Thunb.) Steud.) Wood Grown in Korea. Journal of Korean Wood Science and Technology 46(5): 511-526. https://doi.org/10.5658/WOOD.2018.46.5.511
  21. Korkut, S., Akgul, M., Dundar, T. 2008. The effects of heat treatment on some technological properties of Scots pine (Pinus sylvestris L.) wood. Bioresource Technology 99(6): 1861-1868. https://doi.org/10.1016/j.biortech.2007.03.038
  22. Lee, J.M., Lee, W.H. 2018. Dimensional Stabilization through Heat Treatment of Thermally Compressed Wood of Korean Pine. Journal of the Korean Wood Science and Technology 46(5): 471-485. https://doi.org/10.5658/WOOD.2018.46.5.471
  23. Missio, A.L., Mattos, B.D., Gatto, D.A., De Lima, E.A. 2014. Thermal analysis of charcoal from fast-growing eucalypt wood: Influence of raw material moisture content. Journal of Wood Chemistry and Technology 34(3): 191-201. https://doi.org/10.1080/02773813.2013.852588
  24. Modes, K.S., Santini, E.J., Vivian, M.A., Haselein, M.A. 2017. Efeito da termorretificacao nas propriedades mecanicas das madeiras de Pinus taeda e Eucalyptus grandis. Ciencia Florestal 27(1): 291-302. https://doi.org/10.5902/1980509826467
  25. Moura, L.F., Brito, J.O. 2011. Efeito da termorretifcacao sobre as propriedades colorimetricas das madeiras de Eucalyptus grandis e Pinus caribaea var. hondurensis. Scientia Forestalis 39(89): 69-76.
  26. Park, Y., Jeon, W.-S., Yoon, S.-M., Lee, H.M., Hwang, W.-J. 2020. Evaluation of Cell-Wall Microstructure and Anti-Swelling Effectiveness of Heat-Treated Larch Wood. Journal of the Korean Wood Science and Technology 48(6): 780-790. https://doi.org/10.5658/wood.2020.48.6.780
  27. Pincelli, A.L.P.S.M., Moura L.F., Brito, J.O. 2012. Effect of thermal rectification on colors of Eucalyptus saligna and Pinus caribaea woods. Maderas. Ciencia y Tecnologia 14(2): 239-248. https://doi.org/10.4067/S0718-221X2012000200010
  28. Pinto, E.M., Machado, G.D.O., Felipetto, R.P.F., Christoforo, A.L., Lahr, F.A.R., Calil Jr, C. 2016. Thermal degradation and charring rate of and wood species. The Open Construction & Building Technology Journal 10(1): 450-456.
  29. Poletto, A.J., Zattera, M.M.C., Santana, H. 2012. Thermal decomposition of wood: influence of wood components and cellulose crystallite size. Bioresource Technology 109(148): 148-153. https://doi.org/10.1016/j.biortech.2011.11.122
  30. Poubel, D.D.S., Garcia, R.A., Santos, W.A.D., Oliveira, G.D.L., Abreu, H.D.S. 2013. Efeito da termorretificacao nas propriedades fisicas e quimicas da madeira de Pinus caribaea. Cerne 19(3): 391-398. https://doi.org/10.1590/S0104-77602013000300005
  31. Priadi, T., Orfian, G., Cahyono, T.D., Iswanto, A.H. 2020. Dimensional Stability, Color Change, and Durability of Boron-MMA Treated Red Jabon (Antochephalus macrophyllus) Wood. Journal of the Korean Wood Science and Technology 48(3): 315-325. https://doi.org/10.5658/WOOD.2020.48.3.315
  32. Romagnoli, M., Segoloni, E., Luna, M., Margaritelli, A., Gatti, M., Santamaria, U., Vinciguerra, V. 2013. Wood colour in Lapacho (Tabebuia serratifolia): chemical composition and industrial implications. Wood Sciense Technology 47(4): 701-716. https://doi.org/10.1007/s00226-013-0534-y
  33. Zanuncio, A., Farias, E., Alves, S.T. 2014. Termorretificacao e Colorimetria da Madeira de Eucalyptus grandis. Floresta e Ambiente 21(1): 85-90. https://doi.org/10.4322/floram.2014.005
  34. Zhang, Y., Liu, X., Apostolidis, P., Gard, W., van de Ven, M., Erkens, S., Jing, R. 2019. Chemical and Rheological Evaluation of Aged Lignin-Modified Bitumen. Materials 12(24): 4176. https://doi.org/10.3390/ma12244176