• Title/Summary/Keyword: Chemical energetics

Search Result 59, Processing Time 0.02 seconds

Photolysis of Tris(trimethylsilyl)methylsilane in the Presence of 2-Propenol

  • Bu, Bong Hyeon;Hong, Seung Gi;Gang, Seong Gwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.1
    • /
    • pp.30-33
    • /
    • 1995
  • UV photolysis of the titled polysilane (Me3Si)3SiMe (I) in the presence of a trapping agent of 2-propenol has been performed to investigate the interaction of short-lived silicon species formed from the photolysis of I with 2-propenol. Product studies show that the Me(Me3Si)Si: (II) and (Me3Si)3Si${\cdot}$(III) are primarily formed as the major reactive species which saturate their valencies via O-H insertion and H-abstraction, respectively. Some products are unstable toward further secondary reaction such as photodissociation and intermolecular reaction. The PM3 semiempirical calculations are performed to deduce the energetics of the photoinduced chemical reactions of I with the substrate.

Anomalous Enrichment of $Pb^+$Ions by Crossed Beam Scattering of a Pb($Zr_xTil_{1-x}O_3$) Plume and an $O_2$ Jet

  • Park, Seong Min;Mun, Ji Yun
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.8
    • /
    • pp.801-804
    • /
    • 2000
  • A crossed beam scattering of a $Pb(ZrxTi1-x)O_3plume$ and an oxygen jetwas studied by using a time-of-flight quadrupole mass spectroscopy. Both simple collisions and reactive scatterings had significant effects on the transportand energetics of ions in the plume. Relative enrichment of metal and metal oxide ions was also changed with the oxygen pulse because of the differences in the mass and chemical properties of the ions. In particular, an anomalous increase ofPb+ ions was observed as the oxygen jet crossed the plume at high laserfluences, while the signal magnitudes of alI other ions were reduced. This originates from the fact that PbO+ ions dissociate easily to liberate Pb+ ions inthe plume since the bond energy of PbO+ is as low as 2.2 eV.

Theoretical Approach for the Structures, Energetics and Spectroscopic Properties of (H2O3)n (n = 1-5) Clusters

  • Seo, Hyun-Il;Bahng, Jin-Ah;Kim, Yeon-Cheol;Kim, Seung-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.3017-3024
    • /
    • 2012
  • The geometrical parameters, vibrational frequencies, and binding energies for $(H_2O_3)_n$ (n = 1-5) have been investigated using various quantum mechanical techniques. The possible structures of the clusters (n = 2-5) are fully optimized and the binding energies are predicted using energy differences at each optimized geometry. The harmonic vibrational frequencies are also determined and zero-point vibrational energies (ZPVEs) are considered for the better prediction of the binding energy. The best estimation of the binding energy for the dimer is 8.65 kcal/mol. For n = 2 and 3, linear structures with all trans forms of the HOOOH monomers are predicted to be the lowest conformations in energy, while the cyclic structures with all cis-HOOOH monomers are preferable structures for n = 4 and 5.

Ab Initio Study on the Structure and Energetics of (CO)2

  • Park, Young-Choon;Lee, Jae-Shin
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.9
    • /
    • pp.1421-1426
    • /
    • 2005
  • The stationary point structures and relative energies between them as well as binding energies of $(CO)_2$ have been investigated at the CCSD(T) level using the correlation-consistent basis sets aug-cc-pVXZ(X=T,Q,5). It is found that while the equilibrium structure corresponds to the C-bonded T-shaped configuration with intermolecular distance of 4.4 $\AA$, there exists another minimum, slightly higher in energy ($\sim$10 $cm^{-1}$) than the global minimum, corresponding to the O-bonded T-shaped configuration with the intermolecular distance of 3.9 $\AA$. The CCSD(T) basis set limit binding energy of $(CO)_2$ is estimated to be 132 $cm^{-1}$.

Preparation and Characterization of Highly Conductive Nickel-coated Glass Fibers

  • Kim, Byung-Joo;Choi, Woong-Ki;Song, Heung-Sub;Park, Jong-Kyoo;Lee, Jae-Yeol;Park, Soo-Jin
    • Carbon letters
    • /
    • v.9 no.2
    • /
    • pp.105-107
    • /
    • 2008
  • In this work, we employed an electroless nickel plating on glass fibers in order to enhance the electric conductivity of fibers. And the effects of metal content and plating time on the conductivity of fibers were investigated. From the results, island-like metal clusters were found on the fiber surfaces in initial plating state, and perfect metallic layers were observed after 10 min of plating time. The thickness of metallic layers on fiber surfaces was proportion to plating time, and the electric conductivity showed similar trends. The nickel cluster sizes on fibers decreased with increasing plating time, indicating that surface energetics of the fibers could become more homogeneous and make well-packed metallic layers, resulting in the high conductivity of Ni/glass fibers.

Stability and Interconversion of Acetylcholine Conformers

  • Lee, Jae Shin;Park, Young Choon
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.10
    • /
    • pp.2911-2916
    • /
    • 2014
  • The gas phase structures, energetics, and interconversion pathways of five lowest energy conformers of acetylcholine were examined employing the B3LYP, MP2, and CCSD(T) methods in conjunction with diverse basis sets including the correlation consistent aug-cc-pVDZ and aug-cc-pVTZ basis sets. It is found that use of adequate basis set containing proper polarization and diffuse functions capable of describing the floppy potential energy surface of acetylcholine is important in correctly predicting the relative stability of these conformers. The interconversion pathways and barrier heights between these conformers were elucidated by examining the potential energy surface for torsional motion, which also manifested the presence of chiral conformations of acetylcholine corresponding to the original conformations. On the basis of high level electronic energy calculations and thermal contribution analysis, four lowest energy conformers appear to be populated in the energy range of less than 1 kcal/mol at room temperature.

Theoretical Study of Phosphoryl Transfer Reactions

  • Han, In-Suk;Kim, Chan-Kyung;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.889-893
    • /
    • 2011
  • The energetics and transition state (TS) structures of the reactions of six substrates, $R_1R_2P$(=O or S)Cl-type where $R_1=R_2$=Me and/or MeO, with ammonia in acetonitrile are theoretically investigated at the level of CPCM-MP2/6-31+G(d) and CPCM-MP2/6-311+G(3df,2p). The degrees of distortion of TS from the ideal trigonal bipyramidal pentacoordinate, ${\Delta}{{\delta}}_{{\neq}b}$ for a backside and ${\Delta}{{\delta}}_{{\neq}f}$ for a frontside attack, are calculated. The results of calculation suggest that the feasibility of a frontside attack for P=S is greater than that for P=O system when the two ligands, $R_1$ and $R_2$, becomes larger. The experimental and calculated results of anilinolyses of $R_1R_2P$(=O or S)Cl-type show the consistent tendencies.

Computational Study of the Molecular Structure, Vibrational Spectra and Energetics of the OIO Cation

  • Lee, Sang-Yeon
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.12
    • /
    • pp.1855-1858
    • /
    • 2004
  • Molecular geometries for the cationic and neutral species of OXO (X=Cl, Br, and I) are optimized using the Hartree-Fock (HF) theory, the second order Moller-Plesset perturbation theory (MP2), the density functional theory with the B3LYP hybrid functional (B3LYP), and the coupled cluster theory using single and double excitation with a perturbational treatment of triplet excitation (CCSD[T]) methods, with two basis sets of triple zeta plus polarization quality. The single point calculations for these species are performed at the CCSD(T,Full) level. The harmonic vibrational frequencies for these species are calculated at the HF, MP2, B3LYP and CCSD(T) levels. The adiabatic ionization potential for OIO is calculated to be 936.7 kJ/mol at the CCSD(T,Full) level and the correct value is estimated to be around 945.4 kJ/mol.

Hydrogen-Atom Abstraction Reaction of CF3CH2OCF3 by Hydroxyl Radical

  • Singh, Hari Ji;Mishra, Bhupesh Kumar;Rao, Pradeep Kumar
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3718-3722
    • /
    • 2010
  • Theoretical investigations are carried out on the title reaction by means of ab-initio and DFT methods. The optimized geometries, frequencies and minimum energy path are obtained at UB3LYP/6-311G(d,p) level. Single point energy calculations are performed at MP2 and MP4 levels of theory. Energetics are further refined by calculating the energy of the species with a modified Gaussian-2 method, G2M(CC,MP2). The rate constant of the reaction is calculated using Canonical Transition State Theory (CTST) utilizing the ab-initio data obtained during the present study and is found to be $5.47{\times}10^{-12}\;cm^3\;molecule^{-1}s^{-1}$ at 298 K and 1 atm.