References
- Solomon, S. Nature 1990, 347, 6291.
- Molina, M. J.; Rowland, F. S. Nature 1974, 249, 810. https://doi.org/10.1038/249810a0
- Rowland, F. S.; Molina, M. J. Chem. Eng. News 1994, 8, 72.
- Weubbles, D. J. J. Geophys. Res. 1983, 88, 1433. https://doi.org/10.1029/JC088iC02p01433
- Scientific Assessment of Stratospheric Ozone, Vol 11, World Meteorological Organization Global Ozone Research and Monitoring Project report No-20 (WMO, Geneva), 1989.
- Wayne, R. P. Chemistry of Atmospheres; Clarendon press: Oxford,2001.
- Tsai, W. T. J. Hazard Mater. 2005, 119, 69. https://doi.org/10.1016/j.jhazmat.2004.12.018
- Sekiya, A.; Misaki, S. J. Fluorine Chem. 2000, 101, 215. https://doi.org/10.1016/S0022-1139(99)00162-1
- Bivens, D. B.; Minor, B. H. Int. J. Refrig. 1998, 21, 567. https://doi.org/10.1016/S0140-7007(98)00027-9
- Ravishankara, R. A.; Turnipseed, A. A.; Jensen, N. R.; Barone, S.; Mills, M.; Howark, C. J.; Solomon, S. Science 1994, 263, 71. https://doi.org/10.1126/science.263.5143.71
- Granier, C.; Shine, K. P.; Daniel, J. S.; Hansen, J. E.; Lal, S.; Stordal, F. Climate Effects of Ozone and Halocarbon Changes; In Scientific Assessment of Ozone Depletion, 1998; Rep. 44, Global Ozone Research and Monitoring Project, World Meteorological Organization, Geneva, Switzerland, 1999.
- Good, D. A.; Francisco, J. S. J. Phys. Chem. 1998, 102, 1854. https://doi.org/10.1021/jp980048n
- Chen, L.; Kutsuna, S.; Tokuhashi, K.; Sekiya, A. J. Phys. Chem. A 2006, 110, 12845. https://doi.org/10.1021/jp064917h
- Urata, S.; Takada, A.; Uchimaru, T.; Chandra, A. K. Chem. Phys.Lett. 2003, 368, 215. https://doi.org/10.1016/S0009-2614(02)01718-9
- Chen, L.; Kutsuna, S.; Tokuhashi, K.; Sekiya, A.; Takeuchi, K.; Ibusuki, T. Int. J. Chem. Kinet. 2003, 35, 239. https://doi.org/10.1002/kin.10124
- Good, D. A.; Kamboures, M.; Santiano, R.; Francisco, J. S. J. Phys.Chem. A 1999, 103, 9230. https://doi.org/10.1021/jp991979h
- Wallington, T. J.; Schneider, W. F.; Sehested, J.; Blide, M.; Platz, J.; Nielsen, O. J.; Christensen, L. K. J. Phys. Chem. A 1997, 101, 8264. https://doi.org/10.1021/jp971353w
- Frisch, M. J. et al. Gaussian 03 (Revision C.02); Gaussian Inc.; Wallingford, CT, 2004.
- Becke, A. D. J. Chem. Phys. 1993, 98, 5648. https://doi.org/10.1063/1.464913
- Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. 1988, 37, 785. https://doi.org/10.1103/PhysRevB.37.785
- Gonzalez, C.; Schlegel, H. B. J. Chem. Phys. 1989, 90, 2154. https://doi.org/10.1063/1.456010
- Curtiss, L. A.; Raghavachari, K.; Trucks, G. W.; Pople, J. A. J.Chem. Phys. 1991, 94, 7221. https://doi.org/10.1063/1.460205
- Mebel, A. M.; Morokuma, K.; Lin, M. C. J. Chem. Phys. 1995,103, 7414. https://doi.org/10.1063/1.470313
- In NIST Chemistry Web Book, NIST Standard Reference Database Number 69, Release (Constants of Diatomic Molecules data compiled by K.P. Huber and G. Herzberg), website: http://www. ccbdb.nist.gov/, 2005.
- Kuchitsu, K. Structure of Free Polyatomic Molecules Basic Data; Springer-Verlag: Berlin, Vol 1, p 58, 1998.
- Frisch, A.; Nielsen, A. B.; Holder, A. J. GaussView Users Manual, Gaussian Inc, 2003.
- Hammond, G. S. J. Am. Chem. Soc. 1955, 77, 334. https://doi.org/10.1021/ja01607a027
- Sun, H.; Gong, H.; Pan, X.; Hao, L.; Sun, C. C.; Wang, R.; Huang, X. J. Phys. Chem. A 2009, 113, 5951. https://doi.org/10.1021/jp9006262
- Yang, L.; Liu, J.; Li, Z. J. Chem. Theory Comput. 2008, 4, 1073. https://doi.org/10.1021/ct800032e
- Scott, A. P.; Radom, L. J. Phys. Chem. 1996, 100, 16502. https://doi.org/10.1021/jp960976r
- Truhlar, D. G.; Garrett, B. C.; Klippenstein, S. J. J. Phys. Chem. 1996, 100, 12771. https://doi.org/10.1021/jp953748q
- Wigner, E. P. Z. Phys. Chem. 1932, B19, 203.
- Oyaro, N.; Sellevag, S. R.; Neilsen, C. J. J. Phys. Chem. A 2005,109, 337. https://doi.org/10.1021/jp047860c
- Shimanouchi, T. In Tables of Molecular Vibrational Frequencies Consolidated; Vol 1, National Bureau of Standards: U.S. GPO, Washington, 1972.
- In NIST Chemistry Web Book, NIST Standard Reference Database Number 69, (Vibrational frequency data compiled by T. Shimanouchi), website: http://www.ccbdb.nist.gov/, 2005.
Cited by
- Theoretical study and rate constants calculation for the reactions X + CF3CH2OCF3 (X = F, Cl, Br) vol.33, pp.6, 2011, https://doi.org/10.1002/jcc.22897
- Theoretical investigation of the gas-phase reactions of CF2ClC(O)OCH3 with the hydroxyl radical and the chlorine atom at 298 K vol.19, pp.8, 2013, https://doi.org/10.1007/s00894-013-1865-1
- A computational perspective on the kinetics and thermochemistry of the gas phase reactions of 1, 1-dichlorodimethylether (DCDME) with OH radical at 298 K vol.112, pp.11, 2014, https://doi.org/10.1080/00268976.2013.842008
- A theoretical investigation on the kinetics and reactivity of the gas-phase reactions of ethyl chlorodifluoroacetate with OH radical and Cl atom at 298 K vol.25, pp.2, 2014, https://doi.org/10.1007/s11224-013-0312-3
- Theoretical investigation of the atmospheric chemistry of methyl difluoroacetate: reaction with Cl atoms and fate of alkoxy radical at 298 K vol.25, pp.5, 2014, https://doi.org/10.1007/s11224-014-0425-3
- Theoretical studies on atmospheric chemistry of HFE-347mcc3: reactions with OH radicals and Cl atoms vol.27, pp.10, 2014, https://doi.org/10.1002/poc.3340
- Theoretical study on the kinetics and branching ratios of the gas phase reactions of 4,4,4-trifluorobutanal (TFB) with OH radical in the temperature range of 250-400K and atmospheric pressure vol.154, pp.None, 2013, https://doi.org/10.1016/j.jfluchem.2013.06.015