• 제목/요약/키워드: Chemical doping

검색결과 535건 처리시간 0.028초

CO Gas-Sensor Based on Pt-Functionalized Mg-Doped ZnO Nanowires

  • Jin, Chang-Hyun;Park, Sung-Hoon;Kim, Hyun-Su;An, So-Yeon;Lee, Chong-Mu
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권6호
    • /
    • pp.1993-1997
    • /
    • 2012
  • Mg-doped ZnO one-dimensional (1D) nanostrutures were synthesized by using a thermal evaporation technique. The morphology, crystal structure, and sensing properties of the Mg-doped ZnO nanostructures functionalized with Pt to CO gas at $100^{\circ}C$ were examined. The diameters of the 1D nanostructures ranged from 80 to 120 nm and that the lengths were up to a few tens of micrometers. The gas sensors fabricated from multiple networked Mg-doped ZnO nanowires functionalized with Pt showed enhanced electrical response to CO gas. The responses of the nanowires were improved by approximately 70, 69, 111, and 81 times at CO concentrations of 10, 25, 50, and 100 ppm, respectively. Both the response and recovery times of the nanowire sensor for CO gas sensing were not nearly changed by Pt functionalization. It also appeared that the Mg doping concentration did not influence the sensing properties of ZnO nanowires as strongly as Pt-functionalization. In addition, the mechanism for the enhancement in the CO gas sensing properties of Mg-doped ZnO nanowires by Pt functionalization is discussed.

Polycyclotriphosphazene Derivative Grafted and NanometerY2O3 Doped SPEEK Composite Membrane for DMFC

  • Li, Xia;Guo, Qiang;Zhang, Tianjiao;Qian, Junzhi;Tan, Xiaolin
    • 대한화학회지
    • /
    • 제57권5호
    • /
    • pp.625-633
    • /
    • 2013
  • A type of polycyclotriphosphazene derivative (PCTPD), hexasulfanilic acid polycyclotriphosphazene (HSACP) and HSACP grafting SPEEK, sulfonated poly[2-(petachloropolycyclotriphosphazene-oxy)] etheretherketone (SPPSACPEEK) were synthesized, which were characterized by FTIR and $^{31}P$ NMR. Then three types of composite membranes such as HSACP grafting SPEEK, HSACP blending SPEEK, and nano $Y_2O_3$ doping and HSACP grafting SPEEK, respectively, were continuously prepared by solution-casting method. Comparing to SPEEK membranes with different amount of HSACP grafted or blended, grafting 15 wt% HSACP and doping 10 wt% nano $Y_2O_3$ SPEEK membrane conducted outstanding overall behavior of proton conductivity reaching $3.18 {\times}10^{-2}$ S/cm at $90^{\circ}C$ which was merely junior to SPEEK with 15 wt% HSACP grafted, methanol permeability coefficient getting $9.46{\times}10^{-8}cm^2{\cdot}s^{-1}$, swelling degree of 20.9% and solid residue of 98.98% which was superior to all specimen.

The Mg Solid Solution far the P-type Activation of GaN Thin Films Grown by Metal-Organic Chemical Vapor Deposition

  • Kim, KeungJoo;Chung, SangJo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제2권4호
    • /
    • pp.24-29
    • /
    • 2001
  • GaN films were grown for various Mg doping concentrations in metal-organic chemical vapor deposition. Below the Mg concentration of 10$^{19}$ ㎤, the thermally annealed sample shows the compensated phase to n-type GaN in Hall measurement. In the MB concentration of 4$\times$10$^{19}$ ㎤ corresponding to the hole carrier concentration of 2.6$\times$1$^{19}$ ㎤ there exists a photoluminescence center of the donor and the acceptor pair transition of the 3.28-eV band. This center is correlated with the defects for a shallow donor of the $V_{Ga}$ and for an acceptor of $Mg_{Ga}$ . The acceptor level shows the binding energy of 0.2-0.25 eV, which was observed by the photon energy of the photocurrent signal of 3.02-3.31 eV. Above the Mg concentration of 4$\times$10$^{19}$ ㎤, both the Mg doping level and Mg concentration were saturated and there Is a photoluminescence center of a deep donor and an acceptor pair transition of the 2.76-eV blue band.

  • PDF

인광특성이 있는 금속 착물의 합성과 그 물질을 이용한 소자 제작 및 소자 특성 평가 (Study on the Characteristics and Fabrication of Organic Light Emitting Devices Using the Synthesised Phosphorescent Metal Complexes)

  • 김영관;손병청;김준호
    • 한국응용과학기술학회지
    • /
    • 제19권2호
    • /
    • pp.97-102
    • /
    • 2002
  • Recently, the phosphorescent organic light-emitting devices (OLEDs) have been extensively studied for their high internal quantum efficiency. In this study, we synthesised several phosphorescent metal complexes, and certified their composition using NMR. We also investigated the characteristics of the phosphorescent OLEDs with the green emitting phosphor, $Ir(ppy)_{3}$. The devices with a structure of indium-tin-oxide(ITO)/N,N'-diphenyl-N,N'-(3-methylphenyI}-1,1'-biphenyl-4,4'-diamine (TPD)/metal complex doped in host materials/2,9-dimethyl-4,7-diphenyl-l,10-phenanthroline(BCP)/tris (8-hydroxyquinolinato) Aluminum($Alq_{3}$)/Li:Al/Al was fabricated, and its electrical and optical characteristics were studied. By changing the doping concentration of tris(2-phenylpyridine)iridium ($Ir(ppy)_{3}$), we fabricated several devices and investigated their characteristics.

Eu와 V 동시 도핑에 의한 BiFeO3 박막의 구조와 전기적 특성 (Structural and Electrical Properties of BiFeO3 Thin Films by Eu and V Co-Doping)

  • 장성근;김윤장
    • 한국전기전자재료학회논문지
    • /
    • 제32권3호
    • /
    • pp.229-233
    • /
    • 2019
  • Pure $BiFeO_3$ (BFO) and (Eu, V) co-doped $Bi_{0.9}Eu_{0.1}Fe_{0.975}V_{0.025}O_{3+{\delta}}$ (BEFVO) thin films were deposited on $Pt(111)/Ti/SiO_2/Si(100)$ substrates by chemical solution deposition. The effects of co-doping were observed by X-ray diffraction, Raman spectroscopy, and scanning electron microscopy (SEM). The electrical properties of the BEFVO thin film were improved as compared to those of the pure BFO thin film. The remnant polarization ($2P_r$) of the BEFVO thin film was approximately $26{\mu}C/cm^2$ at a maximum electric field of 1,190 kV/cm with a frequency of 1 kHz. The leakage current density of the co-doped BEFVO thin film ($4.81{\times}10^{-5}A/cm^2$ at 100 kV/cm) was two orders of magnitude lower than of that of the pure BFO thin film.

SiGe 에피 공정기술을 이용하여 제작된 초 접합 금속-산화막 반도체 전계 효과 트랜지스터의 시뮬레이션 연구 (Simulation Studies on the Super-junction MOSFET fabricated using SiGe epitaxial process)

  • 이훈기;박양규;심규환;최철종
    • 반도체디스플레이기술학회지
    • /
    • 제13권3호
    • /
    • pp.45-50
    • /
    • 2014
  • In this paper, we propose a super-junction MOSFET (SJ MOSFET) fabricated through a simple pillar forming process by varying the Si epilayer thickness and doping concentration of pillars using SILVACO TCAD simulation. The design of the SJ MOSFET structure is presented, and the doping concentration of pillar, breakdown voltage ($V_{BR}$) and drain current are analyzed. The device performance of conventional Si planar metal-oxide semiconductor field-effect transistor(MOSFET), Si SJ MOSFET, and SiGe SJ MOSFET was investigated. The p- and n-pillars in Si SJ MOSFET suppressed the punch-through effect caused by drain bias. This lead to the higher $V_{BR}$ and reduced on resistance of Si SJ MOSFET. An increase in the thickness of Si epilayer and decrease in the former is most effective than the latter. The implementation of SiGe epilayer to SJ MOSFET resulted in the improvement of $V_{BR}$ as well as drain current in saturation region, when compared to Si SJ MOSFET. Such a superior device performance of SiGe SJ MOSFET could be associated with smaller bandgap of SiGe which facilitated the drift of carriers through lower built-in potential barrier.

Facile Modulation of Electrical Properties on Al doped ZnO by Hydrogen Peroxide Immersion Process at Room Temperature

  • Park, Hyun-Woo;Chung, Kwun-Bum
    • Applied Science and Convergence Technology
    • /
    • 제26권3호
    • /
    • pp.43-46
    • /
    • 2017
  • Aluminum-doped ZnO (AZO) thin films were deposited by atomic layer deposition (ALD) with respect to the Al doping concentrations. In order to explain the chemical stability and electrical properties of the AZO thin films after hydrogen peroxide ($H_2O_2$) solution immersion treatment at room temperature, we investigated correlations between the electrical resistivity and the electronic structure, such as chemical bonding state, conduction band, band edge state below conduction band, and band alignment. Al-doped at ~ 10 at % showed not only a dramatic improvement of the electrical resistivity but also excellent chemical stability, both of which are strongly associated with changes of chemical bonding states and band edge states below the conduction band.

Sensing Properties of Ga-doped ZnO Nanowire Gas Sensor

  • Lee, Sang Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • 제16권2호
    • /
    • pp.78-81
    • /
    • 2015
  • Pure ZnO and ZnO nanowires doped with 3 wt.% Ga (‘3GZO’) were grown by pulsed laser deposition in a furnace system. The doping of Ga in ZnO nanowires was analyzed by observing the optical and chemical properties of the doped nanowires. The diameter and length of nanowires were under 200 nm and several ${\mu}m$, respectively. Changes of significant resistance were observed and the sensitivities of ZnO and 3GZO nanowires were compared. The sensitivities of ZnO and 3GZO nanowire sensors measured at 300℃ for 1 ppm of ethanol gas were 97% and 48%, respectively.

APCVD로 in-situ 도핑된 다결정 3C-SiC 박막의 기계적 특성 (Mechanical Properties of in-situ Doped Polycrystalline 3C-SiC Thin Films by APCVD)

  • 김강산;정귀상
    • 한국전기전자재료학회논문지
    • /
    • 제22권3호
    • /
    • pp.235-238
    • /
    • 2009
  • This paper describes the mechanical properties of poly (Polycrystalline) 3C-SiC thin films with $N_2$ in-situ doping. In this work, the poly 3C-SiC film was deposited by APCVD (Atmospheric Pressure Chemical Vapor Deposition) method using single-precursor HMDS (Hexamethyildisilane: $Si_2(CH_3)_6)$ at $1200^{\circ}C$. The mechanical properties of doped poly 3C-SiC thin films were measured by nono-indentation according to the various $N_2$ flow rate. In the case of 0 sccm $N_2$ flow rate, Young's Modulus and hardness were obtained as 285 GPa and 35 GPa, respectively. Young's Modulus and hardness were decreased according to increase of $N_2$ flow rate. The crystallinity and surface roughness was also measured by XRD (X-Ray Diffraction) and AFM (Atomic Force Microscopy), respectively.

Toward Industrial Applications of Graphene Electrodes

  • 홍병희
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2010년도 춘계학술발표대회
    • /
    • pp.3.2-3.2
    • /
    • 2010
  • There have been many efforts to utilize the outstanding properties of graphene for macroscopic applications such as transparent conducting films useful for flexible/stretchable electronics. However, the lack of efficient synthesis, transfer, and doping methods limited the scale and the quality needed for the practical production of graphene films. In this presentation, we introduce ultra-large scale (~30 inch) synthesis, roll-to-roll transfer, and chemical doping of graphene films showing excellent electrical and physical properties suitable for practical applications. Considering the outstanding scalability/processibility of roll-to-roll and CVD methods and the extraordinary flexibility/conductivity of graphene films, we expect the commercial production and application electrodes replacing the use of ITO can be realized in near future.

  • PDF