• Title/Summary/Keyword: Chemical cleaning

Search Result 520, Processing Time 0.026 seconds

Effect of Chemical Mechanical Cleaning(CMC) on Particle Removal in Post-Cu CMP Cleaning (구리 CMP 후 연마입자 제거에 화학 기계적 세정의 효과)

  • Kim, Young-Min;Cho, Han-Chul;Jeong, Hae-Do
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1023-1028
    • /
    • 2009
  • Cleaning is required following CMP (chemical mechanical planarization) to remove particles. The minimization of particle residue is required with each successive technology generation, and the cleaning of wafers becomes more complicated. In copper damascene process for interconnection structure, it utilizes 2-step CMP consists of Cu and barrier CMP. Such a 2-steps CMP process leaves a lot of abrasive particles on the wafer surface, cleaning is required to remove abrasive particles. In this study, the chemical mechanical cleaning(CMC) is performed various conditions as a cleaning process. The CMC process combined mechanical cleaning by friction between a wafer and a pad and chemical cleaning by CMC solution consists of tetramethyl ammonium hydroxide (TMAH) / benzotriazole (BTA). This paper studies the removal of abrasive on the Cu wafer and the cleaning efficiency of CMC process.

Optimization of chemical cleaning for reverse osmosis membranes with organic fouling using statistical design tools

  • Park, Ki-Bum;Choi, Changkyoo;Yu, Hye-Weon;Chae, So-Ryong;Kim, In S.
    • Environmental Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.474-484
    • /
    • 2018
  • The cleaning efficiency of reverse osmosis (RO) membranes inevitably fouled by organic foulants depends upon both chemical (type of cleaning agent, concentration of cleaning solution) and physical (cleaning time, flowrate, temperature) parameters. In attempting to determine the optimal procedures for chemical cleaning organic-fouled RO membranes, the design of experiments concept was employed to evaluate key factors and to predict the flux recovery rate (FRR) after chemical cleaning. From experimental results and based on the predicted FRR of cleaning obtained using the Central Composite Design of Minitab 17, a modified regression model equation was established to explain the chemical cleaning efficiency; the resultant regression coefficient ($R^2$) and adjusted $R^2$ were 83.95% and 76.82%, respectively. Then, using the optimized conditions of chemical cleaning derived from the response optimizer tool (cleaning with 0.68 wt% disodium ethylenediaminetetraacetic acid for 20 min at $20^{\circ}C$ with a flowrate of 409 mL/min), a flux recovery of 86.6% was expected. Overall, the results obtained by these experiments confirmed that the equation was adequate for predicting the chemical cleaning efficiency with regards to organic membrane fouling.

Evaluation on Chemical Cleaning Efficiency of Fouled in $1,000,000m^3/day$ Sea Water Reverse Osmosis Membrane Plant (해수용 역삼투막을 이용한 $1,000,000m^3/day$ 규모의 플랜트에서 오염된 막의 화학세정 효율 평가)

  • Park, Jun-Young;Kim, Ji-Hoon;Jeong, Woo-Won;Nam, Jong-Woo;Kim, Young-Hoon;Lee, Eui-Jong;Lee, Yong-Soo;Jeon, Min-Jung;Kim, Hyung-Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.3
    • /
    • pp.285-291
    • /
    • 2011
  • Membrane fouling is an unavoidable phenomenon and major obstacle in the economic and efficient operation under sea water reverse osmosis (SWRO). When fouling occurs on the membrane surface, the permeate quantity and quality decrease, the trans-membrane pressure (TMP) and operation costs increase, and the membrane may be damaged. Therefore, chemical cleaning process is important to prevent permeate flow from decreasing in RO membrane filtration process. This study focused on proper chemical cleaning condition for Shuaibah RO plant in Saudi Arabia. Several chemical agents were used for chemical cleaning at different contact time and concentrations of chemicals. Also autopsy analysis was performed using LOI, FT-IR, FEEM, SEM and EDX for assessment of fouling. Specially, FEEM analysis method was thought as analyzing and evaluating tool available for selection of the first applied chemical cleaning dose to predict potential organic fouling. Also, cleaning time should be considered by the condition of RO membrane process since the cleaning time depends on the membrane fouling rate. If the fouling exceeds chemical cleaning guideline, to perfectly remove the fouling, certainly, the chemical cleaning is increased with membrane fouling rate influenced by raw water properties, pre-treatment condition and the point of the chemical cleaning operation time. Also choice of cleaning chemicals applied firstly is important.

Study on the Cleaning Screen Printing using Alternative Cleaning Solvent of 1,1,1-TCE, CFC-113 (1,1,1-TCE, CFC-113 대체세정제를 이용한 스크린인쇄 세정연구)

  • Lee, Ki-Chang;Yoon, Cheol-Hun;Hwang, Sung-Kwy;Oh, Se-Young;Lee, Seok-Woo;Ryu, Jung-Wok
    • Journal of the Korean Applied Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.115-122
    • /
    • 1997
  • The field of printing use to pressurization ink using screen gassamer that is called screen printing. Existing cleaning solvent using screen printing are the organic solvents including aromatic compounds carried with poisonous and stench. Besides, cleaning method of current screen printing are for the most part mixed cleaning method of dipping and polish. Using 1,1,1-TCE, CFC-113 alternative system cleaning solvent be substituted for existing cleaning solvent against screen printing ink measured the cleaning efficiency according to gravimetric analysis method and property change of gassamer according to Image Analyzer. Also, Cleaning process system carry with excellent cleaning efficiency studied which was proposed new cleaning process including ultrasonic and vibration cleaning process be substituted for existing mixed cleaning method of dipping and polish.

Effect of 20 % EDTA Aqueous Solution on Defective Tubes (Alloy600) in High Temperature Chemical Cleaning Environments (고온화학세정환경에서 20 % EDTA 용액이 결함 전열관 (Alloy600)에 미치는 영향)

  • Kwon, Hyuk-chul
    • Corrosion Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.84-91
    • /
    • 2016
  • The transport and deposition of corrosion products in pressurized water nuclear reactor (PWR) steam generators have led to corrosion (SCC, denting etc.) problems. Lancing, mechanical cleaning and chemical cleaning have been used to reduce these problems. The methods of lancing and mechanical cleaning have limitations in removing corrosion products due to the structure of steam generator tubes. But high temperature chemical cleaning (HTCC) with EDTA is the most effective method to remove corrosion products regardless of the structure. However, EDTA in chemical cleaning aqueous solution and chemical cleaning environments affects the integrity of materials used in steam generators. The nuclear power plants have to perform the pre-test (also called as qualification test (QT)) that confirms the effect on the integrity of materials after HTCC. This is one of the series studies that assess the effect, and this study determines the effects of 20 % EDTA aqueous solution on defective tubes in high temperature chemical cleaning environments. The depth and magnitude of defects in steam generator (SG) tubes were measured by eddy current test (ECT) signals. Surface analysis and magnitude of defects were performed by using SEM/EDS. Corrosion rate was assessed by weight loss of specimens. The ECT signals (potential and depth %) of defective tubes increased marginally. But the lengths of defects, oxides on the surface and weights of specimens did not change. The average corrosion rate of standard corrosion specimens was negligible. But the surfaces on specimens showed traces of etching. The depth of etching showed a range on the nanometer. After comprehensive evaluation of all the results, it is concluded that 20 % EDTA aqueous solution in high temperature chemical cleaning environments does not have a negative effect on defective tubes.

Characteristics of $SiO_2$ Scale Removal by Chemical Cleaning in Reverse Osmosis Membrane Process (역삼투막 공정에서 화학적 세정에 의한 $SiO_2$ scale 제거특성)

  • DockKo, Seok;Lee, Hyung-Jib
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.1
    • /
    • pp.93-101
    • /
    • 2010
  • Reverse osmosis (RO) membranes have been widely used for desalination as well as water and wastewater treatment facilities. Cleaning process is important to maintain stable operation as well as prevention of membrane fouling. Purpose of this research is to analyze electrostatistic and chemical characteristics after cleaning of RO membrane against $SiO_2$ scale. Four RO membranes of polyamide are used and examined about effect of chemical cleaning. EDTA (ethylene diamine tetraacetic acid) and SDS (sodium dodecil sulfate) and NaOH are applied for cleaning process after operation in synthetic water. Then, cleaning was performed with chemicals such concentration as 6hr, 12hr and 24hr, respectively. As a result, transmittances of FT-IR of four membranes are compared at each cleaning concentration. Ta/Tv shows difference of chemical composition between new membrane and cleaning membrane after cleaning. Type B of RO membrane is turned out to be most vulnerable to cleaning among four membranes. In terms of zeta potential, new membrane has -16 mV to +6 mV on pH while scaled membrane has -18 mV to 2 mV. However, it changed -23mV to 0.9 mV after cleaning. In comparison with existing salt rejection of RO membranes after cleaning, the rejection of the membranes goes down 0.7% maximum. Though cleaning changes the characteristics of membrane surface, it does not greatly affect salt rejection. pH is a critical factor to flux change in PA (polyamide) membrane.

The Optimum Cleaning Process of Non-aqueous Alternative Solvents for 1,1,1-TCE (1,1,1-TCE에 대한 비수계성 대체세정제의 최적 세정공정)

  • Jung, Duck-Chae;Lee, Ki-Chang;Kong, Seung-Dae;Mok, Gab-Young;Lee, Seok-Woo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.237-240
    • /
    • 1999
  • This study showed that the optimized cleaning process using non-aqueous cleaning solvents is adaptable in the industrial field for existing 1.1.1-TCE cleaning solvents which is an ozone depleting sustance. Alternative cleaning solvent system substituted for existing cleaning solvent against non-aqueous pollutants(cutting & flux oil), was evaluated for the cleaning efficiency using gravimetric analysis method and surface change of sample by Image analyzer. The results showed that alternative solvents and process had excellent cleaning efficiency.

Preparation and Effects of Acidic Cleaning Agents; for Aluminum (알루미늄용 산성세정제의 제조 및 세정효과)

  • Shim, Il-Woo;Jo, Hye-Jin;You, Hyuk-Jae;Wu, Jong-Pyo;Kim, Myung-Soo;Hahm, Hyun-Sik;Park, Hong-Soo;Baik, Woon-Phil
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.306-312
    • /
    • 2004
  • An acid cleaning agent (AACA) for aluminum was prepared by blending of sorbitol, n-octanoic acid, MJU-100A, Tetronix T-701, PPA-23, C8-83 and phosphoric acid. With the prepared AACA, degreasing, foam height, etching and derusting tests were carried out. As a result, AACA-4 and AACA-7 showed better cleaning ability than commercial acid cleaning agents.

Comparison of physical cleaning applied to chemical backwashing of wastewater reuse membrane system (하수재이용 막여과 공정에서 약품 역세에서의 물리세정 영향 비교 평가)

  • Lee, Chang-Ha;Kim, Young-Hoon;Jeon, Min-Jung;Lee, Yong-Soo;Jang, Am;Kim Hyung-Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.6
    • /
    • pp.981-987
    • /
    • 2011
  • Biologically treated water contains a large quantity of organic matters and microorganisms which can cause various problems to membrane. The membrane fouling occurred by these reasons is hard to control by single physical cleaning. This study analyzes the efficiency of aeration with chemical backwashing and foulants removal during chemical backwashing. The cleaning efficiency improves when the chemical concentration is high and the contact time of chemical is long. Chemical backwashing with aeration shows exceptional cleaning efficiency which leads the physical cleaning is required during chemical backwashing since it forms flow inside the membrane submerged tank. From the foulants removal analysis, the particles such as turbidity and TOC removal rate increase when the aeration is applied. Dissolved matter of DOC and UV254 removal is dependent on higher chemical concentration. According to FTIR analysis, one of major foulants, the polysaccharide is controlled by the chemical backwashing with aeration condition.

Chemical cleaning of fouled polyethersulphone membranes during ultrafiltration of palm oil mill effluent

  • Said, Muhammad;Mohammad, Abdul Wahab;Nor, Mohd Tusirin Mohd;Abdullah, Siti Rozaimah Sheikh;Hasan, Hassimi Abu
    • Membrane and Water Treatment
    • /
    • v.5 no.3
    • /
    • pp.207-219
    • /
    • 2014
  • Fouling is one of the critical factors associated with the application of membrane technology in treating palm oil mill effluent (POME), due to the presence of high concentration of solid organic matter, oil, and grease. In order to overcome this, chemical cleaning is needed to enhance the effectiveness of membranes for filtration. The potential use of sodium hydroxide (NaOH), sodium chloride (NaCl), hydrochloric acid (HCl), ethylenediaminetetraacetic acid (EDTA), and ultrapure water (UPW) as cleaning agents have been investigated in this study. It was found that sodium hydroxide is the most powerful cleaning agent, the optimum conditions that apply are as follows: 3% for the concentration of NaOH, $45^{\circ}C$ for temperature solution, 5 bar operating pressure, and solution pH 11.64. Overall, flux recovery reached 99.5%. SEM images demonstrated that the membrane surface after cleaning demonstrated similar performance to fresh membranes. This is indicative of the fact that NaOH solution is capable of removing almost all of the foulants from PES membranes.