• Title/Summary/Keyword: Chemical bond

Search Result 1,580, Processing Time 0.021 seconds

Geometries and Energies of S$_N$2 Transition States$^\dag$

  • Lee, Ik-Choon;Kim, Chan-Kyung;Song, Chang-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.5
    • /
    • pp.391-395
    • /
    • 1986
  • MNDO calculations were carried out to determine reactant complexes and transition states of the $S_N2$ reactions of $CH_3X\;+\;Y^-\;{\to}\;CH_3Y\;+\;X^-$ where X = F, Cl, CN and Y = CN, OH, F, Cl. The leaving group ability was found to vary inversely with the activation barrier, which in turn was mainly ascribable to the deformation energies accompanied with bond stretching of C-X bond and inversion of $CH_3$ group. The nucleophilicity was shown to be in the order $Cl^->F^->OH^->CN^-$ but the effect on the activation barrier was relatively small compared with that of the leaving group. The bond breaking and bond formation indices and energy decomposition analysis showed that the TS for the reaction of $CH_3$Cl occurs in the early stage of the reaction coordinate relative to that of $CH_3$F. It has been shown that the potential energy surface (PES) diagrams approach can only accommodate thermodynamic effects but fails to correlate intrinsic kinetic effects on the TS structure.

Theoretical Studies on the Gas-Phase Alkylation of Delocalized Ambident Anions with Methyl Fluoride

  • 이익춘;박형연;한인숙;김창곤;김찬경;이본수
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.5
    • /
    • pp.559-566
    • /
    • 1999
  • Gas-phase alkylations of delocalized ambident anions, Y---CH---X- where X, Y=CH2, O, or S, have been investigated theoretically at the MP2/6-31+G*//MP2/6-31+G* and QCISD/6-31+G*//MP2/6-31+G* lev-els. O-and S-alkylations (X=O and S) are more favored kinetically by ΔE^≠ = 4.6 and 9.8 kcal mol-1 than the respective C-alkylations even though they are thermodynamically less favored by 22.4 and 6.0 kcal mol-1 respectively. It was found that the transition structures for the C-alkylations are imbalanced due to the endoergic rehybridi-zation of the carbon center from sp2 to sp3 which leads to premature bond contraction of the C-Y bond and delayed bond stretching of the C-X bond. In the O-, or S-alkylation, such endoergic process is not required since the σ-lone pair on O or S is involved in the initial stage of alkylation. The imbalanced TSs for the C-alkylation are accompanied by higher intrinsic barriers and deformation energies.

Theoretical Investigation of the Hydrogen-bonded Halide-acetylene Anion Complexes

  • Byeong-Seo Cheong
    • Journal of the Korean Chemical Society
    • /
    • v.68 no.2
    • /
    • pp.65-73
    • /
    • 2024
  • The halide-acetylene anions, X--HCCH (X = F, Cl, and Br) have been studied by using several different ab initio and DFT methods to determine structures, hydrogen-bond energies, vibrational frequencies of the anion complexes. Although the halide-acetylene complexes all have linear equilibrium structures, it is found that the fluoride complex is characterized with distinctively different structure and interactions compared to those of the chloride and bromide complexes. The performance of various density functionals on describing ionic hydrogen-bonded complexes is assessed by examining statistical deviations with respect to high level ab initio CCSD(T) results as reference. The density functionals employed in the present work show considerably varying degrees of performance depending on the properties computed. The performances of each density functional on geometrical parameters related with the hydrogen bond, hydrogen-bond energies, and scaled harmonic frequencies of the anion complexes are examined and discussed based on the statistical deviations.

Comparing the Stability of Geometrically rigid Tricyclopropyl Carbinyl Cations by $^{19}$F NMR Spectroscopy

  • Shin, Jung-Hyu;Kim, Kyong-Tae;Shin, Hun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.3
    • /
    • pp.144-145
    • /
    • 1987
  • The relative stability as function of geometry in the rigid tricyclopropylcarbinyl cations with varied bond angle (${\alpha}$) between the plane of cyclopropane ring and the bond connecting cyclopropane ring to cationic carbon was examined by $^{19}F$ nmr spectroscopy. 7-p-Fluorophenyltricyclo[2.2.2.$0^{2,6}$]octan-7-yl(4) and 8-p-fluorophenyltricyclo[3.2.2.$0^{2,7}$]nonan-8-yl cation (8) were generated from corresponding tertiary alcohols under stable ion conditions, and their $^{19}F$ chemical shifts were compared with those of model compounds such as 7-nortricyclyl cation (3) and tricyclo[3.3.1.$0^{2,7}$]octan-8-yl cation (7). Consequently, it is concluded that the varied orientation of bond angle (${\alpha}$) within in the bisected conformation does not affect degree of the charge delocalization into cyclopropane ring.

Hydrogen Bonding Dynamics of Phenol-(H2O)2 Cluster in the Electronic Excited State: a DFT/TDDFT Study (전자 여기상태에서 phenol-(H2O)2 크러스터의 수소결합 동력학: DFT/TDDFT 연구)

  • Wang, Se;Hao, Ce;Wang, Dandan;Dong, Hong;Qiu, Jieshan
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.385-391
    • /
    • 2011
  • The time-dependent density functional theory (TDDFT) method has been carried out to investigate the excitedstate hydrogen-bonding dynamics of phenol-$(H_2O)_2$ complex. The geometric structures and infrared (IR) spectra in ground state and different electronically excited states ($S_1$ and $T_1$) of the hydrogen-bonded complex have been calculated using the density functional theory (DFT) and TDDFT method. A ring of three hydrogen bonds is formed between phenol and two water molecules. We have demonstrated that the intermolecular hydrogen bond $O_1-H_2{\cdots}O_3-H$ of the three hydrogen bonds is strengthened in $S_1$ and $T_1$ states. In contrast, the hydrogen bond $O_5-H_6{\cdots}O_1-H$ is weakened in $S_1$ and $T_1$ states. These results are obtained by theoretically monitoring the changes of the bond lengths of the hydrogen bonds and hydrogen-bonding groups in different electronic states. The hydrogen bond $O_1-H_2{\cdots}O_3-H$ strengthening in both the $S_1$ and $T_1$ states is confirmed by the calculated stretching vibrational mode of O-H (phenol) being red-shifted upon photoexcitation. The hydrogen bond strengthening and weakening behavior in electronically excited states may exist in other ring structures of phenol-$(H_2O)_n$.

Crystal structural property and chemical bonding nature of cellulose nanocrystal formed by high-pressure homogenizer (고압 균질기를 이용하여 형성된 셀룰로오스 나노결정의 결정 구조 및 화학적 결합 특성 연구)

  • Chel-Jong Choi;Nae-Man Park;Kyu-Hwan Shim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.3
    • /
    • pp.79-85
    • /
    • 2024
  • We investigated the crystal structural property and chemical bonding nature of cellulose nanocrystal extracted directly from cotton cellulose using high-pressure homogenizer. The nanowire-like cellulose nanocrystals were randomly distributed in the form of a dense mesh. Based on calculating the interplanar distance of the Bragg-diffracted crystal plane observed through X-ray diffraction (XRD) analysis, it was found that the cellulose nanocrystals formed by high-pressure homogenizer had a monoclinc crystal structure, corresponding to the cellulose Iβ sub-polymorph. Solid-state nuclear magnetic resonance (NMR) analysis for the quantitatively evaluation of the amorphous region in cellulose nanocrystals revealed that the crystallinity index of cellulose nanocrystals was calculated to be 53.06 %. The O/C ratio of the surface of cellulose nanocrystal was estimated to be 0.82. Further analysis showed that chemical bonds of C-C bond or C-H bond, C-O bond, O-C-O bond or C=O bond, and O-C=O bond were the main chemical bonding states of the cellulose nanocrystal surface.

The Effects of the Structural Characteristics on Properties of Their Bridging OH Groups for $AlPO_4-5$ Molecular Sieve : MNDO Calculations ($AlPO_4-5$ 분자체에서 가교 OH 그룹의 성질에 대한 구조 특성 효과 : MNDO 계산)

  • Son, Man-Shick;Lee, Chong-Kwang;Paek, U-Hyon
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.9
    • /
    • pp.787-792
    • /
    • 1993
  • Semiempirical MNDO calculations are employed to study relation properties on bridging OH group with Al-O(P-O) bond length and Al-O-P bond angle of structural characteristics using birdging $(OH)_3AlOP(OH)_3$ and $(OH)_3AlOHP(OH)_3^+$ model culster. We know that the O-H bond dissociation energy of bridging OH group is increased with increasing Al-O(P-O) bond length and decreasing Al-O-P bond angle. The bridging OH group is formed into enlarged Al-O(P-O) bond length and shortened Al-O-P bond angle in bridging oxygen atom by a hydrogen migration. The negative net charge of bridging oxygen atom is increased with longer Al-O-P bond angle, while the positive net charge is decreased with longer Al-O-P bond angle.

  • PDF

Chitosan-induced biomodification on demineralized dentin to improve the adhesive interface

  • Isabella Rodrigues Ziotti;Vitoria Leite Paschoini;Silmara Aparecida Milori Corona;Aline Evangelista Souza-Gabriel
    • Restorative Dentistry and Endodontics
    • /
    • v.47 no.3
    • /
    • pp.28.1-28.12
    • /
    • 2022
  • Objectives: Metalloproteinase-inhibiting agents, such as chitosan, can prevent collagen degradation in demineralized dental substrates, thereby improving the adhesive interface. This study evaluated the bond strength (BS) and chemical and morphological characterization of the adhesive interface after applying chitosan solution to demineralized dentin. Materials and Methods: The 80 third molars were selected. Forty teeth underwent caries induction using the pH cycling method. The teeth were divided according to the treatment: distilled water (control) and 2.5% chitosan solution. The surfaces were restored using adhesive and composite resins. Half of the specimens in each group were aged, and the other half underwent immediate analyses. The teeth were sectioned and underwent the microtensile bond strength test (µTBS), and chemical and morphological analyses using energy-dispersive spectroscopy and scanning electron microscopy, respectively. Data analysis was performed using 3-way analysis of variance. Results: For µTBS, sound dentin was superior to demineralized dentin (p < 0.001), chitosan-treated specimens had higher bond strength than the untreated ones (p < 0.001), and those that underwent immediate analysis had higher values than the aged specimens (p = 0.019). No significant differences were observed in the chemical or morphological compositions. Conclusions: Chitosan treatment improved bond strength both immediately and after aging, even in demineralized dentin.

Absorption Spectroscopy of Biological Specimens Near X-ray Absorption Edges of Constituent Elements

  • Ito, Atsushi;Shinohara, Kunio
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.460-462
    • /
    • 2002
  • Absorption spectra of biological specimens in the soft X-ray region have been presented with special reference to the XANES (X-ray absorption Near Edge Structure) of constituent elements. Absorption spectrum in this wavelength region is characterized by the absorption edges from which elemental content could be derived. In addition, XANES has a characteristic profile for chemical environment around the element such as chemical bond. Using the specific absorption peak we can assign not only the chemical bond but also molecules having such a chemical bond. In the present paper, absorption spectrum of DNA was measured in the wavelength range from 1.5nm to 5nm. Spectrum of Chinese Hamster Ovary (CHO) cells was compared with the DNA spectrum. XANES were distinct at the K absorption edges of major elements, C, N and O. In the spectrum of the cells prominent peaks at the L absorption edge of minor element Ca were also detectable. XANES profiles in small local areas in a cell could also be measured in combination with X-ray microscopy. These give information about local chemical environment in a cell. XANES at the phosphorus K absorption edge in a human HeLa cell was successfully obtained corresponding to a sharp and intensive XANES peak of DNA.

  • PDF

A Study on the Chemical Constituents from Marine Sponge Luffariella sp. (해면 Luffariella sp.의 화학적 성분 연구)

  • Park, Sun Ku;Kim, Sung Soo;Park, Jun Dae;Hong, Jung Sun;Kim, In Kyu
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.7
    • /
    • pp.559-563
    • /
    • 1995
  • The three metabolites, Germacrene alcohol(1), Aaptamine(2) and Hexacyclic terpene(3) were isolated from Marine Sponge Luffariella sp., collected in October 1992, Manado Bay, Sulawesi in Indonesia showed in vitro activity against KB cancer cell line, and structure assignment for 1 was corrected by comparison of their spectral data with the literature $values^1$. Their structure were elucidated by $^1H$, $^13C$ NMR, $^1H$ $^13C$(1 bond) Heteronuclear Multiple Quantum Coherence Spectroscopy$(HMQC)^2$, $^1H$ $^13C$(2 and 3 bond) Heteronuclear Multiple Bond Correlation Spectroscopy$(HMBC)^3$, Electron Impact Mass Spectroscopy(EI ms), Ultra-violet Spectroscopy(UV) and Infrared Spectroscopy(IR).

  • PDF