DOI QR코드

DOI QR Code

Crystal structural property and chemical bonding nature of cellulose nanocrystal formed by high-pressure homogenizer

고압 균질기를 이용하여 형성된 셀룰로오스 나노결정의 결정 구조 및 화학적 결합 특성 연구

  • Chel-Jong Choi (School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center (SPRC), Jeonbuk National University) ;
  • Nae-Man Park (Hyper-Reality Metaverse Research Laboratory, Electronics and Telecommunications Research Institute (ETRI)) ;
  • Kyu-Hwan Shim (School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center (SPRC), Jeonbuk National University)
  • 최철종 (전북대학교 반도체화학공학부 반도체물성연구소) ;
  • 박래만 (한국전자통신연구원 초현실 메타버스 연구실) ;
  • 심규환 (전북대학교 반도체화학공학부 반도체물성연구소)
  • Received : 2024.06.07
  • Accepted : 2024.06.13
  • Published : 2024.06.30

Abstract

We investigated the crystal structural property and chemical bonding nature of cellulose nanocrystal extracted directly from cotton cellulose using high-pressure homogenizer. The nanowire-like cellulose nanocrystals were randomly distributed in the form of a dense mesh. Based on calculating the interplanar distance of the Bragg-diffracted crystal plane observed through X-ray diffraction (XRD) analysis, it was found that the cellulose nanocrystals formed by high-pressure homogenizer had a monoclinc crystal structure, corresponding to the cellulose Iβ sub-polymorph. Solid-state nuclear magnetic resonance (NMR) analysis for the quantitatively evaluation of the amorphous region in cellulose nanocrystals revealed that the crystallinity index of cellulose nanocrystals was calculated to be 53.06 %. The O/C ratio of the surface of cellulose nanocrystal was estimated to be 0.82. Further analysis showed that chemical bonds of C-C bond or C-H bond, C-O bond, O-C-O bond or C=O bond, and O-C=O bond were the main chemical bonding states of the cellulose nanocrystal surface.

고압 균질기를 이용하여 면 셀룰로오스 원료로부터 직접 셀룰로오스 나노결정을 추출하고 이에 대한 결정 구조 및 화학적 결합 상태에 대한 연구를 수행하였다. 형성된 셀룰로오스 나노결정은 나노와이어 형태의 구조적 특성을 가지며, 조밀한 구조의 메쉬 형태로 분포하였다. X-ray diffraction (XRD) 분석을 통해 관찰된 Bragg 결정면의 면간거리 계산을 통해 고압 균질기로부터 추출된 셀룰로오스 나노결정이 셀룰로오스 Iβ 하부 다형체인 monoclinc 결정구조를 갖음을 확인하였다. 셀룰로오스 나노결정에 포함된 비정질 영역을 정량적으로 평가하기 위한 Solid-state nuclear magnetic resonance(NMR) 분석 결과 셀룰로오스 나노결정의 결정화도 지수는 5 3.06 %로 계산되었다. 형성된 셀룰로오스 나노결정 표면의 O/C ratio는 0.82로 계산되었으며, C-C 결합 혹은 C-H 결합, C-O 결합, O-C-O 결합 혹은 C=O 결합, O-C=O 결합의 화학적 결합이 셀룰로오스 나노결정 표면의 주요 화학적 상태임을 알 수 있었다.

Keywords

Acknowledgement

본 연구는 한국전자통신연구원의 "셀룰로오스의 반도체 소재화 원천연구" 과제의 지원으로 수행되었습니다.

References

  1. L.P. Novo, J. Bras, A. Garcia, N. Belgacem and A.A.S. Curvelo, "Subcritical water: a method for green production of cellulose nanocrystals", ACS Sustainable Chem. Eng. 3 (2015) 2839.
  2. M. Cheng, Z. Qin, Y. Chen, J. Liu and Z. Ren, "Facile one-step extraction an oxidative carboxylation of cellulose nanocrystals through hydrothermal reaction by using mixed inorganic acids", Cellulose 24 (2017) 3243.
  3. Y. Habibi, L. Lucia and O. Rojas, "Cellulose nanocrystals: Chemistry, self-assembly, and applications", Chem. Rev. 110 (2010) 3479.
  4. K. Oksman, A.P. Mathew, D. Bondeson and I. Kvien, "Manufacturing process of cellulose whiskers/polylactic acid nanocomposites", Compos. Sci. Technol. 66(15) (2006) 2776.
  5. T. Nishino, K. Takano and K. Nakamae, "Elastic modulus of the crystalline regions of cellulose polymorphs", J. Polym. Sci. B Polym. Phys. 33(11) (1995) 1647.
  6. R.J. Moon, A. Martini, J. Nairn, J. Simonsen and J. Youngblood, "Cellulose nanomaterials review: Structure, properties and nanocomposites", Chem. Soc. Rev. 40(7) (2011) 3941.
  7. H.P.S. Abdul Khalil, A.H. Bhat and A.F. Ireana Yusra, "Green composites from sustainable cellulose nanofibrils: A review", Carbohydr. Polym. 87 (2012) 963.
  8. M. Lee, M.H. Heo, H. Lee, H.-H. Lee, H. Jeong, Y.-W. Kim and J. Shin, "Facile and eco-friendly extraction of cellulose nanocrystals via electron beam irradiation followed by high-pressure homogenization", Green Chem. 20 (2018) 2596.
  9. S. Enzo, G. Fagherazzi, A. Benedetti and S. Polizzi, "A profile-fitting procedure for analysis of broadened X-ray diffraction peaks. I. Methodology", J. Appl. Cryst 21 (1988) 536.
  10. S. Nanda, P. Mohanty, K.K. Pant, S. Naik, J.A. Kozinski and A.K. Dalai, "Characterization of North American lignocellulosic biomass and biochars in terms of their candidacy for alternate renewable fuels", Bioenergy Res. 6 (2013) 663.
  11. M. Wada, L. Heux and J. Sugiyama, "Polymorphism of cellulose I family: Reinvestigation of cellulose IVI", Biomacromolecules 5 (2004) 1385.
  12. R. Atalla and D. Vanderhart, "Studies on the structure of cellulose using Raman spectroscopy and solid state 13C NMR", IPC Tech. Pap. Ser. (1987).
  13. T. Imai, J. Sugiyama, T. Ito h and F. Ho rii, "Almo st pure Iαcellulose in the cell wall of Glaucocystis", J. Struct. Biol. 127 (1999) 248. https://doi.org/10.1006/jsbi.1999.4160
  14. H. Yamamoto and F. Horii, "CPMAS carbon-13 NMR analysis of the crystal transformation induced for Valonia cellulose by annealing at high temperatures", Macromolecules 26 (1993) 1313.
  15. M. Wada, T. Okano and J. Sugiyama, "Allomorphs of native crystalline cellulo se I evaluated by two equato - rial d-spacings", J. Wood Sci. 47 (2001) 124.
  16. W.L. Earl and D.L. VanderHart, "Observations by high-resolution carbon-13 nuclear magnetic resonance of cellulose I related to morphology and crystal structure", Macromolecules 14 (1981) 570.
  17. D.L. VanderHart and R.H. Atalla, "Studies of microstructure in native celluloses using solid-state carbon-13 NMR", Macromolecules 17 (1984) 1465.
  18. S.E. Razic, R. Cunko, L. Bautista and V. Bukosek, "Plasma effect on the chemical structure of cellulose fabric for modification of some functional properties", Procedia Eng. 200 (2017) 333.
  19. M.L. Gars, A. Delvart, P. Roger, M.N. Belgacem and J. Bras, "Amidation of TEMPO-oxidized cellulose nanocrystals using aromatic aminated molecules", Colloid Polym. Sci. 298 (2020) 603.
  20. Q.-l. Lu, X.-y. Li, L.-r. Tang, B.-l. Lu and B. Huang, "One-pot tandem reactions for the preparation of esterified cellulose nanocrystals with 4-dimethylaminopyridine as a catalyst", RSC Adv. 5 (2015) 56198.
  21. R.F.S. Barbosa, A.G. Souza, F.F. Ferreira and D.S. Rosa, "Isolation and acetylation of cellulose nanostructures with a homogeneous system", Carbohydr. Polym. 218 (2019) 208.