• Title/Summary/Keyword: Chemical assay

Search Result 1,067, Processing Time 0.032 seconds

Chemical Components, Antitermite and Antifungal Activities of Cinnamomum parthenoxylon Wood Vinegar

  • ADFA, Morina;ROMAYASA, Ari;KUSNANDA, Arif Juliari;AVIDLYANDI, Avidlyandi;YUDHA S., Salprima;BANON, Charles;GUSTIAN, Irfan
    • Journal of the Korean Wood Science and Technology
    • /
    • 제48권1호
    • /
    • pp.107-116
    • /
    • 2020
  • Termiticidal and fungicidal activities of wood vinegar from Cinnamomum parthenoxylon (CP) stem wood have been evaluated against Coptotermes curvignathus and wood rotting fungi (Schizophyllum commune and Fomitopsis palustris). The utilized CP wood vinegar was produced in the operating temperature range 250-300℃ pyrolysis. A no-choice test was applied for evaluating termiticidal activity with 33 active termites and antifungal activity using the agar media assay. The result showed that an increase in the concentrations of CP wood vinegar significantly raised the mortality of termite. CP wood vinegar showed high termiticidal activity, organic acids (acetic acid 42.91%, 3-butenoic acid 6.89%, butanoic acid, 2-propenyl ester 2.26%), and ketones (1-hydroxy-2-propanone 5.14%, 3-methylcyclopentane-1,2-dione 2.34%) might be largely contributed to termiticidal activity in addition to other minor components. Furthermore, CP wood vinegar exhibited significant inhibition of fungal growth. These data showed that CP wood vinegar was more toxic to white-rot fungi (S. commune) than brown-rot (F. palustris). The results suggested that phenolic compounds from lignin degradation were responsible for good antifungal activity.

감마선을 이용한 조직공학용 젤라틴이 개질된 미생물 셀룰로오스 지지체의 제작 및 특성 (Preparation and Characterization of Gelatin-immobilized Bacterial Cellulose Scaffold for Tissue Engineering Using Gamma-ray Irradiation)

  • 최종배;정성린;권희정;박종석;노영창;최영훈;박경진;박만용;신흥수;임윤묵
    • 방사선산업학회지
    • /
    • 제6권2호
    • /
    • pp.159-164
    • /
    • 2012
  • Bacterial cellulose (BC) is generated from citrus gel by Gluconacetobacter hansenii TL-2C. BC has good properties such as high-burst pressure, high-water contact and the ultrafine highly nanofibrous structure of mimic natural extracellular matrix (ECM) for tissue engineering. In this study, acrylic acid (AAc) was grafted onto BC surfaces under aqueous conditions using gamma-ray irradiation, and then immobilized gelatin onto AAc-g-BC. The characterization of scaffolds was performed by scanning electron microscopy (SEM), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), toluidine blue O (TBO) assay. Morphology of gelatin and AAc incorporation onto BC nanofibers did not changed. Our study suggests that gelatin-immobilized BC nanofibers scaffold has a potentiality to fabricate 3D nanofibrous scaffolds for tissue engineering.

신규 자외선차단제로서 메톡시신나미도프로필폴리실세스퀴옥산의 in vitro SPF 평가 및 화장품에의 적용성에 대한 연구 (Studies on the in vitro SPF Assay and Application of Cosmetic Formulation of Methoxycinnamidopropyl Polysilsesquioxane with a New UV-screening Agent)

  • 정택규;김영백;윤태진;윤경섭
    • 대한화장품학회지
    • /
    • 제36권1호
    • /
    • pp.47-55
    • /
    • 2010
  • 기존의 유기계 자외선차단제는 피부에 대한 자극과 투과의 문제, 무기계 자외선차단제는 백탁현상 등 몇 가지 문제점이 알려져 있다. 최근에 보다 효과적인 자외선차단제를 개발하기 위한 연구가 진행되고 있으며, 그 중의 하나가 유기/무기 복합구조의 자외선차단제에 대한 연구이다. 본 연구진은 새로운 자외선차단제인 메톡시선나마도프로필폴리설세스퀴옥산의 제조와 그 효과에 대해 보고한 바 있다. 특별히, 본 연구는 신규 자외선차단제의 화학적 구조에 대한 정성적인 분석과 향상된 자외선차단 효과 및 화장료 제형에 대한 적용성을 평가하였다. 자외선차단제의 구조분석은 TGA, solid state NMR, 원소분석을 이용하여 평가하였으며, 자외선차단지수는 5 wt%를 포함하는 제형을 평가하였을 때, 6.0 정도의 수치를 보였다. 또한 기존의 유기 및 무기 자외선차단제와 혼합적용 시, 자외선차단효과에 대한 우수한 시너지 효과를 나타내었으며 W/S 유형의 화장료 제형에서 우수한 적용성을 보였다.

Suppression of Fusarium Wilt Caused by Fusarium oxysporum f. sp. lactucae and Growth Promotion on Lettuce Using Bacterial Isolates

  • Yadav, Dil Raj;Adhikari, Mahesh;Kim, Sang Woo;Kim, Hyun Seung;Lee, Youn Su
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권9호
    • /
    • pp.1241-1255
    • /
    • 2021
  • This study was carried out to explore a non-chemical strategy for enhancing productivity by employing some antagonistic rhizobacteria. One hundred eighteen bacterial isolates were obtained from the rhizospheric zone of various crop fields of Gangwon-do, Korea, and screened for antifungal activity against Fusarium wilt (Fusarium oxysporum f. sp. lactucae) in lettuce crop under in vitro and in vivo conditions. In broth-based dual culture assay, fourteen bacterial isolates showed significant inhibition of mycelial growth of F. oxysporium f. sp. lactucae. All of the antagonistic isolates were further characterized for the antagonistic traits under in vitro conditions. The isolates were identified on the basis of biochemical characteristics and confirmed at their species level by 16S rRNA gene sequencing analysis. Arthrobacter sulfonivorans, Bacillus siamensis, Bacillus amyloliquefaciens, Pseudomonas proteolytica, four Paenibacillus peoriae strains, and Bacillus subtilis were identified from the biochemical characterization and 16S rRNA gene sequencing analysis. The isolates EN21 and EN23 showed significant decrease in disease severity on lettuce compared to infected control and other bacterial treatments under greenhouse conditions. Two bacterial isolates, EN4 and EN21, were evaluated to assess their disease reduction and growth promotion in lettuce in field conditions. The consortium of EN4 and EN21 showed significant enhancement of growth on lettuce by suppressing disease caused by F. oxysporum f. sp. lactucae respectively. This study clearly indicates that the promising isolates, EN4 (P. proteolytica) and EN21 (Bacillus siamensis), can be commercialized and used as biofertilizer and/or biopesticide for sustainable crop production.

Evaluation of circulating IGF-I and IGFBP-3 as biomarkers for tumors in dogs

  • Song, Doo-Won;Ro, Woong-Bin;Sur, Jung-Hyang;Seung, Byung-Joon;Kang, Hyun-Min;Kim, Jong-Won;Park, See-Hyoung;Park, Hee-Myung
    • Journal of Veterinary Science
    • /
    • 제22권6호
    • /
    • pp.77.1-77.10
    • /
    • 2021
  • Background: Serum-based parameters are considered non-invasive biomarkers for cancer detection. In human studies, insulin-like growth factor-I and II (IGF-I and IGF-II) and insulin-like growth factor binding protein-3 (IGFBP-3) are useful as diagnostic or prognostic markers and potential therapeutic targets. Objectives: This study examined the diagnostic utility of circulating IGF-I, IGF-II, and IGFBP-3 levels in healthy dogs and dogs with tumors. Methods: The serum concentrations of these biomarkers in 86 dogs with tumors were compared with those in 30 healthy dogs using an enzyme-linked immunosorbent assay (ELISA). Results: The ELISA results showed no difference between healthy dogs and dogs with tumors in the serum IGF-II concentrations. On the other hand, there was a significant difference in the circulating IGF-I and IGFBP-3 levels between healthy dogs and dogs with tumors. The concentrations of serum IGF-I (median [interquartile range], 103.4 [59.5-175] ng/mL) in dogs with epithelial tumors were higher than those (58.4 ng/mL [43.5-79.9]) in healthy dogs. Thus, the concentrations of serum IGFBP-3 (43.4 ng/mL [33.2-57.2]) in dogs with malignant mesenchymal tumors were lower than those (60.8 ng/mL [47.6-70.5]) in healthy dogs. Conclusions: The serum IGF-I and IGFBP-3 levels can be used as diagnostic biomarkers in dogs with tumors.

흰만가닥버섯(Hypsizygus marmoreus)추출물의 항노화 및 항산화 활성 (Antiaging and antioxidant activity of Hypsizygus marmoreus extracts)

  • 권혜진
    • 한국응용과학기술학회지
    • /
    • 제35권4호
    • /
    • pp.1081-1087
    • /
    • 2018
  • 본 연구는 국내 자생 흰만가닥버섯(Hypsizygus marmoreus)을 시료로 선정하여 80% EtOH 추출 및 EtOAc, BuOH, D.W. 분획믈로 항노화 및 항산화 분석을 통해 복합 기능성 화장품 원료로서의 가능성을 제시하고자 하였다. 동물세포주인 HaCaT cell을 이용하여 시료의 세포 독성을 분석한 결과 시료의 독성은 세포에 거의 영향을 주지 않는 것으로 확인되었다. 시료농도 10%에서 30.41%의 elastase 저해율을 보였고 collagenase 저해활성은 시료농도 1%에서 11.65%의 저해율을 보여 유사 버섯류보다 우수한 항노화 활성을 보였다. 분획물의 총 페놀 함량은 778.4 mg, 흰만가닥버섯 1 g당 2.59 mg으로 천연 항산화제로서의 가능성을 확인 할 수 있었다. 이상의 결과로 흰만가닥버섯 추출물은 항노화 및 항산화 기능의 천연 화장품 소재로 활용 가치가 높을 것으로 판단된다.

The relation between serum levels of epidermal growth factor and necrotizing enterocolitis in preterm neonates

  • Ahmed, Heba Mostafa;Kamel, Nsreen Mostafa
    • Clinical and Experimental Pediatrics
    • /
    • 제62권8호
    • /
    • pp.307-311
    • /
    • 2019
  • Purpose: Necrotizing enterocolitis (NEC) is one of the most serious complications of prematurity. Many risk factors can contribute to the development of NEC. The epidermal growth factor (EGF) plays a major role in intestinal barrier function, increases intestinal enzyme activity, and improves nutrient transport. The aim of this study was to assess the role of epidermal growth factor in the development of NEC in preterm neonates. Methods: In this study, 130 preterm neonates were included and divided into 3 groups, as follows: group 1, 40 preterm neonates with NEC; group 2, 50 preterm neonates with sepsis; and group 3, 40 healthy preterm neonates as controls. The NEC group was then subdivided into medical and surgical NEC subgroups. The serum EGF level was measured using enzyme-linked immunosorbent assay. Results: Serum EGF levels (pg/dL) were significantly lower in the NEC group (median [interquartile range, IQR], 9.6 [2-14]) than in the sepsis (10.1 [8-14]) and control groups (11.2 [8-14], P<0.001), with no significant difference between the sepsis and control groups, and were positively correlated with gestational age (r=0.7, P<0.001). A binary logistic regression test revealed that low EGF levels and gestational ages could significantly predict the development of NEC. The receiver-operating characteristic curve for EGF showed an optimal cutoff value of 8 pg/mL, with 73.3% sensitivity, 98% specificity, and an area under the curve of 0.92. Conclusion: The patients with NEC in this study had significantly lower serum EGF levels (P<0.001), which indicated that EGF could be a reliable marker of NEC in preterm neonates.

The inflammatory activity of purified-ferulic acid from Tetragonia tetragonioides

  • Kim, Na-Hyeon;Park, Hye-Jin;Lee, Eun-Ho;Cho, Eun-Bi;Kang, In-Kyu;Cho, Young-Je
    • Journal of Applied Biological Chemistry
    • /
    • 제62권3호
    • /
    • pp.239-246
    • /
    • 2019
  • In this study, an evaluation of the anti-inflammatory effect of ferulic acid isolated from Tetragonia tetragonioides in lipopolysaccharide (LPS) simulated RAW 264.7 cells was made. The chemical structure of the active compound was elucidated by $^1H$-NMR, $^{13}C$-NMR, and FAB-MS, and was confirmed to be ferulic acid. Ferulic acid was purified via open column chromatography with Sephadex LH-20 and MCI gel CHP-20. To test the anti-inflammatory effect of ferulic acid, LPS-stimulated RAW 264.7 cells were treated in subsequent experiments with different concentrations of ferulic acid (5, 10, and $25{\mu}g/mL$) and the levels of inflammatory cytokines and enzymes were also measured by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay. Cell viability was above 95% at acid concentrations ranging from $5-25{\mu}g/mL$. The results showed that 30% of the production of nitric oxide and 66% of prostaglandin $E_2$ were inhibited by $25{\mu}g/mL$ of ferulic acid, it also inhibited the protein expression of both inducible nitric oxide synthase and cyclooxygenase-2 by 70%. Additionally, it inhibited the production of the pro-inflammatory cytokines, tumor necrosis factor-${\alpha}$, interleukin-6, and interleukin-$1{\beta}$ by 40, 75, and 77%, respectively. According to these results, the anti-inflammatory activity of ferulic acid was demonstrated via his implication in the inhibition of the expression and secretion of inflammatory substances in LPS-stimulated RAW 264.7 cells. Therefore, we concluded that ferulic acid can be used as a functional additive having anti-inflammatory activity.

Gold Nanoparticles Conjugation Enhances Antiacanthamoebic Properties of Nystatin, Fluconazole and Amphotericin B

  • Anwar, Ayaz;Siddiqui, Ruqaiyyah;Shah, Muhammad Raza;Khan, Naveed Ahmed
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권1호
    • /
    • pp.171-177
    • /
    • 2019
  • Parasitic infections have remained a significant burden on human and animal health. In part, this is due to lack of clinically-approved, novel antimicrobials and a lack of interest by the pharmaceutical industry. An alternative approach is to modify existing clinically-approved drugs for efficient delivery formulations to ensure minimum inhibitory concentration is achieved at the target site. Nanotechnology offers the potential to enhance the therapeutic efficacy of drugs through modification of nanoparticles with ligands. Amphotericin B, nystatin, and fluconazole are clinically available drugs in the treatment of amoebal and fungal infections. These drugs were conjugated with gold nanoparticles. To characterize these gold-conjugated drug, atomic force microscopy, ultraviolet-visible spectrophotometry and Fourier transform infrared spectroscopy were performed. These drugs and their gold nanoconjugates were examined for antimicrobial activity against the protist pathogen, Acanthamoeba castellanii of the T4 genotype. Moreover, host cell cytotoxicity assays were accomplished. Cytotoxicity of these drugs and drug-conjugated gold nanoparticles was also determined by lactate dehydrogenase assay. Gold nanoparticles conjugation resulted in enhanced bioactivity of all three drugs with amphotericin B producing the most significant effects against Acanthamoeba castellanii (p < 0.05). In contrast, bare gold nanoparticles did not exhibit antimicrobial potency. Furthermore, amoebae treated with drugs-conjugated gold nanoparticles showed reduced cytotoxicity against HeLa cells. In this report, we demonstrated the use of nanotechnology to modify existing clinically-approved drugs and enhance their efficacy against pathogenic amoebae. Given the lack of development of novel drugs, this is a viable approach in the treatment of neglected diseases.

Safety Evaluation of Bifidobacterium breve IDCC4401 Isolated from Infant Feces for Use as a Commercial Probiotic

  • Choi, In Young;Kim, Jinhee;Kim, Su-Hyeon;Ban, O-Hyun;Yang, Jungwoo;Park, Mi-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권7호
    • /
    • pp.949-955
    • /
    • 2021
  • Previously, our research group isolated Bifidobacterium breve IDCC4401 from infant feces as a potential probiotic. For this study, we evaluated the safety of B. breve IDCC4401 using genomic and phenotypic analyses. Whole genome sequencing was performed to identify genomic characteristics and investigate the potential presence of genes encoding virulence, antibiotic resistance, and mobile genetic elements. Phenotypic analyses including antibiotic susceptibility, enzyme activity, production of biogenic amines (BAs), and proportion of D-/L-lactate were evaluated using E-test, API ZYM test, high-performance liquid chromatography (HPLC), and D-/L-lactic acid assay respectively. The genome of B. breve IDCC4401 consists of 2,426,499 bp with a GC content of 58.70% and 2,016 coding regions. Confirmation of the genome as B. breve was provided by its 98.93% similarity with B. breve DSM20213. Furthermore, B. breve IDCC4401 genes encoding virulence and antibiotic resistance were not identified. Although B. breve IDCC4401 showed antibiotic resistance against vancomycin, we confirmed that this was an intrinsic feature since the antibiotic resistance gene was not present. B. breve IDCC4401 showed leucine arylamidase, cystine arylamidase, α-galactosidase, β-galactosidase, and α-glucosidase activities, whereas it did not show production of harmful enzymes such as β-glucosidase and β-glucuronidase. In addition, B. breve IDCC4401 did not produce any tyramine, histamine, putrescine, cadaverine, or 2-phenethylamine, which are frequently detected BAs during fermentation. B. breve IDCC4401 produced 95.08% of L-lactate and 4.92% of D-lactate. Therefore, our findings demonstrate the safety of B. breve IDCC 4401 as a potential probiotic for use in the food industry.