• 제목/요약/키워드: Chemical Vapour Deposition

검색결과 83건 처리시간 0.026초

Electrically conductive nano adhesive bonding: Futuristic approach for satellites and electromagnetic interference shielding

  • Ganesh, M. Gokul;Lavenya, K.;Kirubashini, K.A.;Ajeesh, G.;Bhowmik, Shantanu;Epaarachchi, Jayantha Ananda;Yuan, Xiaowen
    • Advances in aircraft and spacecraft science
    • /
    • 제4권6호
    • /
    • pp.729-744
    • /
    • 2017
  • This investigation highlights rationale of electrically conductive nano adhesives for its essential application for Electromagnetic Interference (EMI) Shielding in satellites and Lightning Strike Protection in aircrafts. Carbon Nano Fibres (CNF) were functionalized by electroless process using Tollen's reagent and by Plasma Enhanced Chemical Vapour Deposition (PECVD) process by depositing silver on CNF. Different weight percentage of CNF and silver coated CNF were reinforced into the epoxy resin hardener system. Scanning Electron Microscopy (SEM) micrographs clearly show the presence of CNF in the epoxy matrix, thus giving enough evidence to show that dispersion is uniform. Transmission Electron Microscopy (TEM) studies reveal that there is uniform deposition of silver on CNF resulting in significant improvement in interfacial adhesion with epoxy matrix. There is a considerable increase in thermal stability of the conductive nano adhesive demonstrated by Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). Four probe conductivity meters clearly shows a substantial increase in the electrical conductivity of silver coated CNF-epoxy composite compared to non-coated CNF-epoxy composite. Tensile test results clearly show that there is a significant increase in the tensile strength of silver coated CNF-composites compared to non-coated CNF-epoxy composites. Consequently, this technology is highly desirable for satellites and EMI Shielding and will open a new dimension in space research.

Electrodeposition of Silicon in Ionic Liquid of [bmpy]$Tf_2N$

  • 박제식;이철경
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.30.1-30.1
    • /
    • 2011
  • Silicon is one of useful materials in various industry such as semiconductor, solar cell, and secondary battery. The metallic silicon produces generally melting process for ingot type or chemical vapor deposition (CVD) for thin film type. However, these methods have disadvantages of high cost, complicated process, and consumption of much energy. Electrodeposition has been known as a powerful synthesis method for obtaining metallic species by relatively simple operation with current and voltage control. Unfortunately, the electrodeposition of the silicon is impossible in aqueous electrolyte solution due to its low oxidation-reduction equilibrium potential. Ionic liquids are simply defined as ionic melts with a melting point below $100^{\circ}C$. Characteristics of the ionic liquids are high ionic conductivities, low vapour pressures, chemical stability, and wide electrochemical windows. The ionic liquids enable the electrochemically active elements, such as silicon, titanium, and aluminum, to be reduced to their metallic states without vigorous hydrogen gas evolution. In this study, the electrodeposion of silicon has been investigated in ionic liquid of 1-butyl-3-methylpyrolidinium bis (trifluoromethylsulfonyl) imide ([bmpy]$Tf_2N$) saturated with $SiCl_4$ at room temperature. Also, the effect of electrode materials on the electrodeposition and morphological characteristics of the silicon electrodeposited were analyzed The silicon electrodeposited on gold substrate was composed of the metallic Si with single crystalline size between 100~200nm. The silicon content by XPS analysis was detected in 31.3 wt% and the others were oxygen, gold, and carbon. The oxygen was detected much in edge area of th electrode due to $SiO_2$ from a partial oxidation of the metallic Si.

  • PDF

Analysis of Stacked and Multi-layer Graphene fot the Fabrication of LEDs

  • 김기영;민정홍;장소영;이준엽;박문도;김승환;전성란;송영호;이동선
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.433.1-433.1
    • /
    • 2014
  • The research of graphene, a monolayer of carbon atoms with honeycomb lattice structure, has explosively increased after appeared in 2004. As a result, its high transmittance, mobility, thermal conductivity, and outstanding mechanical and chemical stability have been proved. Especially, many researches were executed about the field of transparent electrode highlighting material of substituting the indium tin oxide (ITO). In addition, qualitative and quantitative improvements have been achieved due to many synthesis methods were discovered. Among them, mostly used method is chemical vapour deposition of graphene grown on copper or nickel. The transmittance, mobility, sheet resistance, and other many properties are completely changed according to these two types of synthesis method of graphene. In this research, considering the difference of characteristics as the synthesis method of graphene, what types of graphene should be used and how to use it were studied. The stacked graphene harvested on copper and multi-layer graphene harvested on nickel were compared and analyzed, as a result, the transmittance of 90% and the sheet resistance of $70{\Omega}{\square}$ was showed even though stacked graphene layers were 4 layers. The reason that could bring these results is lowered sheet resistance due to stacked monolayer graphenes. Moreover, light output power of the three stacked graphene spreading layer shows the highest value, but light-emitting diode with multi-layer graphene died out from 12mA due to also its high sheet resistance. Therefore, we need to clarify about what types of graphene and how to use the graphene in use.

  • PDF

MPCVD를 이용하여 밀리미터 길이로 수직 정렬된 탄소나노튜브의 합성 (Millimeter-Scale Aligned Carbon Nanotubes Synthesized by Oxygen-Assisted Microwave Plasma CVD)

  • 김유석;송우석;이승엽;최원철;박종윤
    • 한국진공학회지
    • /
    • 제18권3호
    • /
    • pp.229-235
    • /
    • 2009
  • 본 연구에서는 철(Fe)을 촉매금속으로 사용하고 마이크로웨이브 플라즈마 화학기상증착법(microwave plasma CVD)을 이용하여 얇은 다중벽 탄소나노튜브를 합성하였다. 촉매금속으로 사용된 철은 직류 마그네트론 스퍼터를 사용하여 증착하였으며, 탄소나노튜브의 합성에는 플라즈마 공급원인 수소($H_2$), 탄소 공급원인 메탄($CH_4$)과 함께 미량의 산소($O_2$) 또는 아르곤(Ar)과 함께 물을 수증기의 형태로 사용하였다. 산소 또는 수증기의 추가에 따른 탄소나노튜브의 성장률의 변화를 주사전자현미경으로 조사하였으며, 결정구조를 투과전자 현미경을 통해 관찰하였다. 또한 라만 분광법을 이용하여 추가 주입 기체의 종류에 따른 탄소나노튜브의 결정성의 변화를 분석하였다. 실험결과, 산소를 추가로 주입하였을 때 성장률이 가장 컸고 결정성도 개선되는 것을 확인하였다. 최종적으로 150 분 동안 합성하여 기판 위에 2.7 mm 이상의 수직 정렬된 얇은 다중벽 탄소나노튜브(thin-multiwalled CNTs)를 합성할 수 있었다.

TiCN PACVD코팅 초경호브의 Skiving절삭특성 평가 (An Evaluation of Skiving Cutting Characteristics of TiCN PACVD Coating Caribide Hob)

  • 천종필
    • 한국산학기술학회논문지
    • /
    • 제13권2호
    • /
    • pp.471-477
    • /
    • 2012
  • SCM420재질의 기어를 담금질을 실시한 후 초경호브(Hob)에 PACVD 코팅처리 후 표면경도가 높은 표면(HRC 60)을 절삭하였다. 코팅처리 없이 난삭재(難削材)로 분류되는 경도가 큰것, 경한 물질을 포함한 것, 강도가 높은 것에 공구수명과 생산성을 향상에는 한계성을 가지고 있다. 이를 개선하기 위해 초경호브에 TiCN코팅처리 전후에 대하여 Skiving 절삭으로 코팅처리 한 호브가 가공성이 좋고, 공구마멸이 적어, 공구수명이 2.5배 증가하는 결과를 얻었다. 실험은 CNC 스카이빙 호빙머신을 이용하여 습식절삭으로 절삭속도와 이송량으로 다양한 조건을 적용하여 공구마멸과 표면거칠기 데이터를 얻었다. 실험결과 조건 2에서(V=200m/min F=0.7mm/rev) Cutting speed가 절삭표면에 Feed Mark가 미세하고, 표면거칠기는 Rmax $4.7{\mu}m$(Ra $1.19{\mu}m$)의 데이터를 얻었다.

삼중접합 실리콘 박막 태양전지 고효율화를 위한 a-$SiO_x$ 상부전지 특성 연구

  • 이지은;조준식;박상현;윤경훈;송진수;김동환;이정철
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.63.2-63.2
    • /
    • 2010
  • 삼중접합 태양전지에 상부전지로 이용되는 a-SiO:H 태양전지는 PECVD(Plasma Enhanced Chemical Vapour Deposition)을 이용하여 증착하였다. i a-SiO:H는 $CO_2/SiH_4$ 비율을 변화하여 밴드갭을 조절하였다. $CO_2/SiH_4$가 0에서 0.43으로 증가 할수록 밴드갭이 1.74 eV에서 1.94 eV로 증가하는 경향을 보였다. 이는 FTIR에서 나타난 결과인 Si-O-Si 결합의 증가 때문인 것으로 판단한다. 그에 반해서 광 전도도는 감소하는 경향을 보였다.그러나 암전도도와 광전도도의 비율인 광민감도는 $10^5$에서 $10^4$의 값으로 비정질 태양전지에 적용가능한 값을 보였다. 이러한 박막 특성을 가진 i a-SiO:H를 이용하여 비정질 실리콘 태양전지를 제작한 결과 $CO_2/SiH_4$의 비율이 증가함에 따라 태양전지의 $V_{oc}$가 0.8 V에서 0.5 V로 현저하게 감소하였고, $J_{sc}$와 FF 역시 11 $mA/cm^2$에서 4 $mA/cm^2$, 69%에서 50%로 감소하였다. 단위박막 결함을 측정하는 CPM(Constant Photocurrent Method)을 이용하여 i a-SiO:H 내부에 $10^{16}cm^{-3}$ 정도의 내부 결함을 관찰하였고 이는 태양전지의 특성 감소와 관련이 있는 것으로 판단한다.

  • PDF

Nano-scale Friction Properties of SAMs with Different Chain Length and End Groups

  • ;윤의성;한흥구;공호성
    • KSTLE International Journal
    • /
    • 제6권1호
    • /
    • pp.13-16
    • /
    • 2005
  • Friction characteristics at nano-scale of self-assembled monolayers (SAMs) having different chain lengths and end groups were experimentally studied.51 order to understand the effect of the chain length and end group on the nano-scalefriction: (1) two different SAMs of shorter chain lengths with different end groups such as methyl and phenyl groups, and (2)four different kinds of SAMs having long chain lengths (C10) with end groups of fluorine and hydrogen were coated on siliconwafer (100) by dipping method and Chemical Vapour Deposition (CVD) technique. Their nano-scale friction was measuredusing an Atomic Force Microscopy (AFM) in the range of 0-40 nN normal loads. Measurements were conducted at the scanning speed of 2 $mu$m/s for the scan size of 1$mu$m x 1 $mu$m using a contact mode type $Si_3N_4$ tip (NPS 20) that had a nominal spring constant0.58 N/m. All experiments were conducted at anlbient temperature (24 $pm$1$circ$C) and relative humidity (45 $pm$ 5%). Results showedthat the friction force increased with applied normal load for all samples, and that the silicon wafer exhibited highest frictionwhen compared to SAMs. While friction was affected by the inherent adhesion in silicon wafer, it was influenced by the chainlength and end group in the SAMs. It was observed that the nano-friction decreased with the chain length in SAMs. In the caseof monolayers with shorter length, the one with the phenyl group exhibited higher friction owing to the presence of benBenerings that are stiffer in nature. In the case of SAMs with longer chain length, those with fluorine showed friction values relativelyhigher than those of hydrogen. The increase in friction due to the presence of fluorine group has been discussed with respect tothe siBe of the fluorine atom.

RTP 와 PECVD을 이용한 저가의 표면 passivation 막들의 특성연구 (Cost-effective surface passication layers by RTP and PECVD)

  • 이지연;이수홍
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 춘계학술대회 논문집 디스플레이 광소자분야
    • /
    • pp.142-145
    • /
    • 2004
  • In this work, we have investigated the application of rapid thermal processing (RTP) and plasma enhanced chemical vapour deposition (PECVD) for surface passivation. Rapid thermal oxidation (RTO) has sufficiently low surface recombination velocities (SRV) $S_{eff}$ in spite of a thin oxides and short process time. The effective lifetime is increasing with an increase of the oxide thickness. In the same oxide thickness, The effective lifetime is independent on the process temperature and time. $S_{eff,max}$ is exponentially decreased with increasing oxide thickness. $S_{eff,max}$ can be reduced to 200 cm/s with only 10 nm oxide thickness. On the other hand, three different types of SiN are reviewed. SiN1 layer has a thickness of about 72 nm and a refractive index of 2.8. Also, The SiN1 has a high passivation quality. The effective lifetime and SRV of 1 $\Omega$ cm Float zone (FZ) silicon deposited with SiN1 is about 800 s and under 10 cm/s, respectively. The SiN2 is optimized for the use as an antireflection layer since a refractive index of 2.3. The SiN3 is almost amorphous silicon caused by less contents of N2 from total process. The effective lifetime on the FZ 1 ${\Omega}cm$ is over 1000 ${\mu}s$.

  • PDF

Electrical transport characteristics of deoxyribonucleic acid conjugated graphene field-effect transistors

  • Hwang, J.S.;Kim, H.T.;Lee, J.H.;Whang, D.;Hwang, S.W.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.482-483
    • /
    • 2011
  • Graphene is a good candidate for the future nano-electronic materials because it has excellent conductivity, mobility, transparency, flexibility and others. Until now, most graphene researches are focused on the nano electronic device applications, however, biological application of graphene has been relatively less reported. We have fabricated a deoxyribonucleic acid (DNA) conjugated graphene field-effect transistor (FET) and measured the electrical transport characteristics. We have used graphene sheets grown on Ni substrates by chemical vapour deposition. The Raman spectra of graphene sheets indicate high quality and only a few number of layers. The synthesized graphene is transferred on top of the substrate with pre-patterned electrodes by the floating-and-scooping method [1]. Then we applied adhesive tapes on the surface of the graphene to define graphene flakes of a few micron sizes near the electrodes. The current-voltage characteristic of the graphene layer before stripping shows linear zero gate bias conductance and no gate operation. After stripping, the zero gate bias conductance of the device is reduced and clear gate operation is observed. The change of FET characteristics before and after stripping is due to the formation of a micron size graphene flake. After combined with 30 base pairs single-stranded poly(dT) DNA molecules, the conductance and gate operation of the graphene flake FETs become slightly smaller than that of the pristine ones. It is considered that DNA is to be stably binding to the graphene layer due to the ${\pi}-{\pi}$ stacking interaction between nucleic bases and the surface of graphene. And this binding can modulate the electrical transport properties of graphene FETs. We also calculate the field-effect mobility of pristine and DNA conjugated graphene FET devices.

  • PDF

폴리실리콘의 전단 압저항현상을 이용한 압력센서 (Pressure sensor using shear piezoresistance of polysilicon films)

  • 박성준;박세광
    • 센서학회지
    • /
    • 제5권5호
    • /
    • pp.31-37
    • /
    • 1996
  • 본 연구에서는 LPCVD(저압화학기상증착)로 형성된 폴리실리콘의 전단 압저항 효과를 이론적으로 분석하고, 전단 압저항체를 응용한 압력센서를 설계 제작하여 그 특성을 연구하였다. 제작된 센서는 $1kgf/cm^{2}$의 압력과 $-20{\sim}+125^{\circ}C$의 온도범위에서 3.1mV/V의 압력감도, ${\pm}0.012%FS/^{\circ}C$의 오프셀온도계수(TCO), ${\pm}0.08%FS/^{\circ}C$의 감도온도계수(TCS)를 나타내었다. 또한, 같은 온도범위에서 ${\pm}0.2%FS$의 히스테리시스, ${\pm}1.5%FS$의 비직선성 변화를 보였다. 전단형 압력센서는 브리지형과는 달리 하나의 저항체로 이루어져 있어 브리지의 각 저항값 불일치로 인한 특성의 오차를 줄일 수 있고, 절연층 위에 폴리실리콘이 형성되어 있으므로 온도범위를 확장할 수 있는 장점을 가진다.

  • PDF