• Title/Summary/Keyword: Chemical Storage System

Search Result 320, Processing Time 0.026 seconds

Quality Characteristics of Makgeolli during Freezing Storage (냉동저장에 따른 막걸리의 품질특성)

  • Lee, Jin-Won;Shim, Jae-Yong
    • Food Engineering Progress
    • /
    • v.14 no.4
    • /
    • pp.328-334
    • /
    • 2010
  • Recently the enhancement and development of makgeolli processing to extend shelf life are constantly accomplished. However, the standardization to restrict microorganisms including cold chain system and sterilizing system has not been established yet. Therefore, the objective of this study was to investigate the storage stability of makgeolli using quick freezing (QF) and slow freezing (SF) storage methods. The storage period was 40 days. Every 10 days, the samples were taken from the quick and slow freezing storage chamber. And then the samples were put into a $10^{\circ}C$ refrigerator for 24 hr to thaw them. The final samples were evaluated for chemical experiments and microbial cell counts. As a result, reducing sugar content was dramatically increased after 10 days for all of the samples. In titratable acidity and color values case, these values did not significantly change by storage time. In case of lactic acid bacteria and yeasts for all the samples, there was a decreasing tendency with storage time. Especially, in case of lactic acid bacteria, the changes from the beginning microbial cell counts ($4.1{\times}10^7$ CFU/mL) for QF and SF after 20 days were $3.6{\times}10^6$ CFU/mL and $1.8{\times}10^4$ CFU/mL, respectively. This result showed that the freezing methods could restrict the microbial growth in makgeolli.

Properties of the Blends of Ethylene-Vinyl Acetate and Ethylene-$\alpha$-Olefins Copolymers

  • Park Soochul;Yim Chaiseok;Lee Byung H.;Choe Soonja
    • Macromolecular Research
    • /
    • v.13 no.3
    • /
    • pp.243-252
    • /
    • 2005
  • The effect of the vinyl acetate (VA) content on the thermal, viscoelastic, rheological, morphological and mechanical behaviors in various blends of ethylene-vinyl acetate (EVA)/ethylene-$\alpha$-olefin copolymers was investigated using 28, 22 and $15 mol\%$ of VA in EVA. In the DSC melting and crystallization thermograms of all of the EVA systems blended with ethylene-$\alpha$-olefin copolymers, discrete peaks were observed which were related to the constituents. In the dynamic mechanical thermal analysis, the storage modulus increased with increasing content of ethylene-$\alpha$-olefin copolymers. In addition, the transition regions relating to the tan bpeaks varied with the VA content. The crossover point between G' and G" varied depending on the VA contents, and shear-thinning was more prominent in the EVA/EtBC system. In the SEM investigation, a discrete phase morphology was observed in both the EVA/EtBC and EVA/EtOC blends, but the contrast improved with decreasing VA content. However, the tensile strength and modulus improved, but the elongation at break reduced with decreasing VA content, implying that the ethylene-$\alpha$-olefin copolymers play the role of reinforcing materials. Thus, the EVA and ethylene-$\alpha$-olefin components in the copolymers are immiscible in the molten and solid states, but are nevertheless mechanically compatible.

A Study on Cure Behavior of an Epoxy/Anhydride System and Silica Filler Effects (에폭시-산무수물 조성물의 경화거동 및 실리카 첨가에 따른 특성변화 연구)

  • Lee, Chung Hee;Kim, Kyoung-Mahn
    • Journal of Adhesion and Interface
    • /
    • v.10 no.3
    • /
    • pp.117-126
    • /
    • 2009
  • Epoxy/anhydride systems with silica filler were studied to improve the cure behavior and characteristics. To study the curing process of epoxy/anhydride using DSC and a stress rheometer, it was observed that gelation temperature increased by increasing the thermal rate or in high isothermal conditions, while it was observed that the degree of cure at gelation decreased. Thermal stability of the epoxy/anhydride system showed any increment by increasing silica contents, except slight decrease of weight by containing humidity. The epoxy resin cured with 30% of silica filler decreased coefficient thermal expansion (CTE) about 33% to show $40ppm/^{\circ}C$. Specimens filled with 30 wt% of silica showed 60% increase in storage modulus at $30^{\circ}C$ to show 3909 MPa compared with neat resin to 2,377 MPa. Epoxy/anhydride systems with surface treated silica by silane coupling agent decreased storage modulus.

  • PDF

A Study on Acceleration Aging Characteristics of B-KNO3 Igniter (B-KNO3 점화제의 가속 노화 특성 연구)

  • Paik, Jong Gyu;Ryu, Byung Tae;Kwon, Mira
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.166-174
    • /
    • 2014
  • This research investigated the aging properties of the $B-KNO_3$ system as the igniter. The $B-KNO_3$ system showed the degradation in ignition properties depending on the method and period of storage. It should be found out the cause of the degradation to predict the reliability of the igniters. The changes of the properties by the degradation after aging tests were analyzed by microstructure analysis, XRD analysis and thermal analysis using DSC. It was found out that the lattice parameters of the $KNO_3$ as the oxidizer in the ignition system was changed into the JCPDS values as the aging time increased. Conclusively, the changes of the crystal structure of oxidizer affected the activation energy increasing as aging time increased.

Comparison of Bonding Characteristics of Hydrogen in Ti2Pd and Pd2Ti Alloys

  • Kang, Dae-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.1879-1883
    • /
    • 2011
  • The electronic structure and bonding in $Ti_2Pd$ and $Pd_2Ti$ alloys with and without hydrogen as an interstitial atom were studied by performing extended Huckel tight-binding band calculations. The hydrogen absorption near an octahedral site is found to be a favorable process in $Ti_2Pd$ rather than in $Pd_2Ti$. In metal hydrides, the metal-hydrogen bonding contribution is crucial to the stability of the system. The stronger interaction of hydrogen with Ti atoms in $Ti_2PdH_2$ than with Pd atoms in $Pd_2TiH_2$ is analyzed by perturbation theory.

Development of Energy Harvesting Hybrid system consisted of Electrochromic Device and Dye-Sensitized Solar Cell using Nano Particle Deposition System (나노 입자 적층 시스템(NPDS)을 이용한 염료 감응 태양전지 - 전기 변색 통합 소자 및 에너지 하베스팅 시스템에 대한 연구)

  • Kim, Kwangmin;Kim, Hyungsub;Choi, Dahyun;Lee, Minji;Park, Yunchan;Chu, Wonshik;Chun, Dooman;Lee, Caroline Sunyong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.2
    • /
    • pp.65-71
    • /
    • 2016
  • In this study, Antimony Tin Oxide (ATO) ion storage layer and $TiO_2$ working electrode were fabricated using Nano Particle Deposition System. NPDS is the cutting-edge technology among the dry deposition methods. Accelerated particles are deposited on the substrate through the nozzle using NPDS. The thicknesses for coated layers were measured and layer's morphology was acquired using SEM. The fabricated electrochromic cell's transmittance was measured using UV-Visible spectrometer and power source at 630 nm. As a result, the integrated electrochromic/DSSC hybrid system was successfully fabricated as an energy harvesting system. The fabricated electrochromic cell was self-operated using DSSC as a power source. In conclusion, the electrochromic cell was operated for 500 cycles, with 49% of maximum transmittance change. Also the photovoltaic efficiency for DSSC was measured to be 2.55% while the electrochromic cell on the integrated system had resulted in 26% of maximum transmittance change.

A Study on the Safety Improvement in Incineration System from the Case Study of Acrylic acid manufacturing process Accident (아크릴산 제조공정 사고사례를 통한 소각 시스템의 안전성 향상 방안)

  • Ma, Byung-Chol;Lee, Keun-Won;Im, Ji-Pyo;Kim, Young-Chul
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.4
    • /
    • pp.52-58
    • /
    • 2012
  • Recently, waste gas incineration is increasing due to strong environmental regulatory system in Korea. These incinerating facilities are usually connected with the top of the storage tank through pipeline and incinerate off gas with the flame. Therefore, the flame originated from these facilities is likely to move back into pipeline and might cause an explosion of the storage tank. Accordingly, the purpose of this study is to suggest the preventive measures and the way to improve the safety of these incineration systems through the cause analysis of a major industrial accident occurred in a acrylic acid manufacturing process in Korea. As a result of the study, the preventive measures are suggested as follows. (1) Air or inert gas inflow facilities should be well designed to dilute flammable gases into air or inert gas sufficiently before the blower is restarted in order to prevent the explosion (2) It is needed for the detonation-type flame arresters to be installed on the top of the storage tanks. (3) In case of using the deflagration-type flame arresters, it is necessary to install a rupture disk before the arresters, or blow off the flame outside tanks by connecting the tank top and the incinerator with hood-type pipe. (4) TDR should be installed to be restarted automatically after the momentary power failure.

Bio-degradable 3D-scaffold fabrication using rapid-prototyping system (쾌속조형시스템을 이용한 생체 조직 재생용 지지체 제작과 특성분석)

  • Kim, Ji-Woong;Park, Ko-Eun;Lee, Jun-Hee;Park, Su-A;Kim, Wan-Doo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1697-1699
    • /
    • 2008
  • The purpose of tissue engineering is to repair or replace damaged tissues or organs by a combination of cells, scaffold, suitable biochemical and physio-chemical factors. Among the three components, the biodegradable scaffold plays an important role in cell attachment and migration. In this study, we designed 3D porous scaffold by Rapid Prototyping (RP) system and fabricated layer-by-layer 3D structure using Polycarprolactone (PCL) - one of the most flexible biodegradable polymer. Furthermore, the physical and mechanical properties of the scaffolds were evaluated by changing the pore size and the strand diameter of the scaffold. We changed nozzle diameter (strand diameter) and strand to strand distance (pore size) to find the effect on the mechanical property of the scaffold. And the surface morphology, inner structure and storage modulus of PCL scaffold were analyzed with SEM, Micro-CT and DMA.

  • PDF

Recent Research Trends of Supercapacitors for Energy Storage Systems (에너지 저장시스템을 위한 슈퍼커패시터 최신 연구 동향)

  • Son, MyungSuk;Ryu, JunHyung
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.277-290
    • /
    • 2021
  • A supercapacitor, also called an ultracapacitor or an electrochemical capacitor, stores electrochemical energy by the adsorption/desorption of electrolytic ions or a fast and reversible redox reaction at the electrode surface, which is distinct from the chemical reaction of a battery. A supercapacitor features high specific power, high capacitance, almost infinite cyclability (~ 100,000 cycle), short charging time, good stability, low maintenance cost, and fast frequency response. Supercapacitors have been used in electronic devices to meet the requirements of rapid charging/discharging, such as for memory back-up, and uninterruptible power supply (UPS). Also, their use is being extended to transportation and large industry applications that require high power/energy density, such as for electric vehicles and power quality systems of smart grids. In power generation using intermittent power sources such as solar and wind, a supercapacitor is configured in the energy storage system together with a battery to compensate for the relatively slow charging/discharging time of the battery, to contribute to extending the lifecycle of the battery, and to improve the system power quality. This article provides a concise overview of the principles, mechanisms, and classification of energy storage of supercapacitors in accordance with the electrode materials. Also, it provides a review of the status of recent research and patent, product, and market trends in supercapacitor technology. There are many challenges to be solved to meet industrial demands such as for high voltage module technologies, high efficiency charging, safety, performance improvement, and competitive prices.

Quality of Meat (Longissimus dorsi) from Male Fallow Deer (Dama dama) Packaged and Stored under Vacuum and Modified Atmosphere Conditions

  • Piaskowska, N.;Daszkiewicz, T.;Kubiak, D.;Zapotoczny, P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.12
    • /
    • pp.1782-1789
    • /
    • 2016
  • This study evaluated the effect of vacuum and modified atmosphere (40% $CO_2+60%$ $N_2$, MA) packaging on the chemical composition, physicochemical properties and sensory attributes of chill-stored meat from 10 fallow deer (Dama dama) bucks at 17 to 18 months of age. The animals were hunter-harvested in the forests of north-eastern Poland. During carcass dressing (48 to 54 h post mortem), both musculus longissimus muscles were cut out. Each muscle was divided into seven sections which were allocated to three groups: 0, A, and B. Samples 0 were immediately subjected to laboratory analyses. Samples A were vacuum-packaged, and samples B were packaged in MA. Packaged samples were stored for 7, 14, and 21 days at $2^{\circ}C$. The results of the present study showed that the evaluated packaging systems had no significant effect on the quality of fallow deer meat during chilled storage. However, vacuum-packaged meat samples were characterised by greater drip loss. Vacuum and MA packaging contributed to preserving the desired physicochemical properties and sensory attributes of meat during 21 days of storage. Regardless of the packaging method used, undesirable changes in the colour, water-holding capacity and juiciness of meat, accompanied by tenderness improvement, were observed during chilled storage.