• Title/Summary/Keyword: Chemical Industries

Search Result 864, Processing Time 0.033 seconds

Effects of Etch Parameters on Etching of CoFeB Thin Films in $CH_4/O_2/Ar$ Mix

  • Lee, Tea-Young;Lee, Il-Hoon;Chung, Chee-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.390-390
    • /
    • 2012
  • Information technology industries has grown rapidly and demanded alternative memories for the next generation. The most popular random access memory, dynamic random-access memory (DRAM), has many advantages as a memory, but it could not meet the demands from the current of developed industries. One of highlighted alternative memories is magnetic random-access memory (MRAM). It has many advantages like low power consumption, huge storage, high operating speed, and non-volatile properties. MRAM consists of magnetic-tunnel-junction (MTJ) stack which is a key part of it and has various magnetic thin films like CoFeB, FePt, IrMn, and so on. Each magnetic thin film is difficult to be etched without any damages and react with chemical species in plasma. For improving the etching process, a high density plasma etching process was employed. Moreover, the previous etching gases were highly corrosive and dangerous. Therefore, the safety etching gases are needed to be developed. In this research, the etch characteristics of CoFeB magnetic thin films were studied by using an inductively coupled plasma reactive ion etching in $CH_4/O_2/Ar$ gas mixes. TiN thin films were used as a hardmask on CoFeB thin films. The concentrations of $O_2$ in $CH_4/O_2/Ar$ gas mix were varied, and then, the rf coil power, gas pressure, and dc-bias voltage. The etch rates and the selectivity were obtained by a surface profiler and the etch profiles were observed by a field emission scanning electron microscopy. X-ray photoelectron spectroscopy was employed to reveal the etch mechanism.

  • PDF

Dynamics and Instability of a Polymeric Paint in Roll Coating Process for Automotive Pre-coating Application (자동차 선도장을 위한 롤코팅 공정에서 고분자 도료의 동적 거동 및 불안정성)

  • Kim, Jin-Ho;Lee, In-Jun;Noh, Seung-Man;Kang, Choong-Yeol;Nam, Joon-Hyun;Jung, Hyun-Wook;Park, Jong-Myung
    • Polymer(Korea)
    • /
    • v.35 no.6
    • /
    • pp.574-579
    • /
    • 2011
  • 3-Roll coating process as a key application technology for manufacturing automotive pre-painted metal-sheets has been studied. The 3-Roll coating system for this study consists of pick-up roll for picking up and distributing coating liquid from the reservoir, metering roll to properly meter coating liquid in metering gap regime, and applicator roll for directly transferring liquid into metal-sheet surface. Flow dynamics and operable coating windows of a polymeric paint (primer) with shear-thinning rheological property have been correlated with processing parameters such as speed ratio and metering gap between pick-up and metering rolls. In the uniform coating regime, dry coating thickness increased with increasing metering gap or decreasing speed ratio. Ribbing and cascade instabilities were observed in low speed and high speed ratio conditions, respectively. It is revealed that lower speed ratio makes severity and wavelength of the ribbing increase, aggravating flow instability in coating systems.

A Study on Quantitative Risk Analysis & Model Application for Hydrogen Filling Center (수소충전시설에 대한 정량적 위험성 평가 및 모델적용에 관한 연구)

  • Shin, Jung-Soo;Byun, Hun-Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.6
    • /
    • pp.87-101
    • /
    • 2012
  • In gas industries, the potential risks of serious accidents have been increased due to high technology application and process complexities. Especially, in case of gas-related accidents, the extent of demage is out of control since gas plants handle and produce combustible, flammable, explosive and toxic materials in large amounts. The characteristics of this kind of disaster is that accident frequency is low, while the impact of damage is high, extending to the neighboring residents, environment and related industries as well as employees involved. The hydrogen gases treated important things and it used the basic material of chemical plants and industries. Since 2000, this gas stood in the spotlight the substitution energy for reduction of the global warming in particular however it need to compress high pressure(more than 150 bar.g) and store by using the special cylinders due to their low molecular weight. And this gas led to many times the fire and explosion due to leak of it. To reduce these kinds of risks and accidents, it is necessary to improve the new safety management system through a risk management after technically evaluating potential hazards in this process. This study is to carry out the quantitative risk assesment for hydrogen filling plant which are very dangerous(fire and explosive) and using a basic materials of general industries. As a results of this risk assessment, identified the elements important for safety(EIS) and suggested the practical management tools and verified the reliability of this risk assessment model through case study of accident.

A New Chemical for the Separation of the CRT Panel Glass from its Funnel

  • Lee, Ki-Won;Byun, Ji-Young;Kim, Kyong-Tae;Oh, Jong-Kee
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.71-75
    • /
    • 2001
  • The first step for recycling the CRT bulb is to remove frist seals between the panel and funnel. For this purpose, various kinds of methods have been used. One of those is to use the nitric acid, which is a proven technology and widely used in CRT-making industries. The process. however. has a problem of NOx generation. Such a drawback can be overcome by using a new chemical. This new chemical can remove the frit without NOx generation. This paper describes the dissolution ability of the chemical for lead and zinc oxides and the application to the separation of the CRT panel from its funnel.

  • PDF

Selective Separations Using Molecularly Imprinted Membranes (분자 각인 막의 선택적 분리)

  • Lee, Jeong-Woo;Park, Joong-Kon
    • KSBB Journal
    • /
    • v.20 no.3
    • /
    • pp.133-141
    • /
    • 2005
  • This review presents the preparation, transport mechanism and application of molecularly imprinted membranes (MIM). Molecular imprinting has now been established as a technique which allows the creation of tailor-made binding sites for many classes of compounds. MIM have some advantages; a high capacity due to a large surface area, faster transport of substrate molecules and faster equilibrium of binding cavities compared to molecularly imprinted particles. MIM were prepared by covalent and non-covalent chemical bonding systems, by interactions between functional monomer and template. MIM can be prepared by in-situ polymerization, wet phase inversion, dry phase inversion, and surface imprinting method. MIM can continuously separate mixtures based on facilitated or retarded diffusion of the template. MIM can change their permeability in the presence of templates. MIM have a potential to be used to separate chiral compounds and materials with similar structures. However the application of MIM by the chemical industries is still in its infancy stages.

Synthesis of Acetins from Glycerol using Lipase from Wheat Extract

  • Pradima, J;Rajeswari, M Kulkarni;Archna, Narula;Sravanthi, V;Rakshith, R;Nawal, Rabia Nizar
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.501-506
    • /
    • 2019
  • New technology-driven biocatalysts are revolutionizing the biochemical industries. With maximum utilization of renewable feedstock, biocatalysts have been the basis for a major breakthrough. Lipases are the most widely established catalysts used for hydrolysis, esterification and transesterification reactions. In this research, a biochemical process that combines extraction of lipase enzyme from germinated wheat seeds and its application to valorize glycerol to acetins by esterification is presented. Acetins are among highly rated, value-added products derived from glycerol. The favorable conditions for the enzymatic conversion of glycerol were observed as glycerol to acetic acid molar ratio (1:5), reaction temperature ($40^{\circ}C$) and the amount of enzyme (20% v/v). 65.93% of glycerol conversion was achieved for duration of 15 h with the use of tert-butanol solvent. This method proposes to explore the viability of a biological route to convert glycerol derived from biodiesel industry to acetins with further streamlining.

Clean Technology in Chemical Industries (화학산업의 청정기술 개발)

  • Kim, Younghun;Yi, Jongheop;Kim, Hwayong;Rhee, Hyun-Ku
    • Clean Technology
    • /
    • v.7 no.1
    • /
    • pp.1-12
    • /
    • 2001
  • A variety of international treaties have been developed for the world-wide control of hazardous chemicals, including production, transportation, use and disposal. Those conventions would be appeared as a barrier for the international trade. In particular, chemical industries in korea would face a serious problem unless a proper measure should be provided. One of the solutions is to develop a clean technology including elimination and/or source reduction of hazardous chemicals. In this study, international environmental treaties and management status of hazardous chemicals in korea are reviewed. In addition, strategies for the development of clean technologies are suggested.

  • PDF

In Vitro Mammalian Chromosomal Aberration Test of Allyl Chloride for Workers' Health (근로자의 건강보호를 위한 알릴 염화물의 포유류 배양세포 염색체이상시험)

  • Rim, Kyung-Taek;Kim, Soo-Jin
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.2
    • /
    • pp.160-168
    • /
    • 2014
  • Objectives: Chemical hazard evaluations are important for workers' health and working environments. Allyl chloride (CAS No. 107-05-1) is used in many industries, leading to concerns about the possibility of threats to the health of workers. Since only insufficient or controversial information is available about potential related hazards, an in vitro mammalian chromosomal aberration (CA) assay was conducted in order to gain additional information concerning any such hazards. Moreover, toxicological information from this study could be applied for workers' rights to know, and to prepare or update the Materials Safety Data Sheet (MSDS) for a number of industries. Methods and Results: The assay was performed using the Chinese hamster lung fibroblast cell (ATCC, CRL-1935), by the direct method (-S9) and by the metabolic activated method (+S9 mix). Using the direct method, the seven dosages in the 48-hour treatment group did not show that the frequency of CA is proportionate to the dosage. The frequency of CA is not proportionate to the dosage addition for a six-hour treatment using the metabolic activated method. Conclusions: From these findings, it was decided that this chemical does not induce chromosomal aberrations under the tested conditions.

Risk-Based Inspection(RBI) Technology for Safety Management of the Pressurized Facilities (압력설비의 안전관리를 위한 위험기반검사(RBI) 기술)

  • Lee, Hern-Chang;Han, Seong-Hwan;Cho, Ji-Hoon;Kim, Tae-Ok
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.4
    • /
    • pp.1-6
    • /
    • 2011
  • Risk-based inspection (RBI) is a inspection technique suggesting inspection plan, such as inspection interval and inspection method, of the pressurized facilities based on its risk in the petrochemical, refinery and gas industries. Therefore, we can intensively and cost-effectively maintain, repair and manage the high-risk facilities through RBI technology. This paper reviews RBI technology, such as principle and implemental procedure of RBI, management of risks and facilities and return of investment through RBI, RBI technology at present and its application in domestic industries. In addition, some improvement directions of RBI are also proposed.