Selective Separations Using Molecularly Imprinted Membranes

분자 각인 막의 선택적 분리

  • Lee, Jeong-Woo (Dept. of Chemical Engineering, Kyungpook National University) ;
  • Park, Joong-Kon (Dept. of Chemical Engineering, Kyungpook National University)
  • 이정우 (경북대학교 공과대학 화학공학과) ;
  • 박중곤 (경북대학교 공과대학 화학공학과)
  • Published : 2005.06.01

Abstract

This review presents the preparation, transport mechanism and application of molecularly imprinted membranes (MIM). Molecular imprinting has now been established as a technique which allows the creation of tailor-made binding sites for many classes of compounds. MIM have some advantages; a high capacity due to a large surface area, faster transport of substrate molecules and faster equilibrium of binding cavities compared to molecularly imprinted particles. MIM were prepared by covalent and non-covalent chemical bonding systems, by interactions between functional monomer and template. MIM can be prepared by in-situ polymerization, wet phase inversion, dry phase inversion, and surface imprinting method. MIM can continuously separate mixtures based on facilitated or retarded diffusion of the template. MIM can change their permeability in the presence of templates. MIM have a potential to be used to separate chiral compounds and materials with similar structures. However the application of MIM by the chemical industries is still in its infancy stages.

Keywords

References

  1. Wulff, G. (1993), Molecular Interactions in Bioseparations, edited by That T. Ngo. 363, Plenium Press, New York
  2. Sheldon, R. A. (1996), Chirotechnology, Marcel Dekker Inc. 18, New York
  3. Brewster, J. H. (1986), Stereochemistry and the Origins of Life, J. Chem. Edu. 63, 667-669 https://doi.org/10.1021/ed063p667
  4. Hornback, J. M. (1998), Organic Chemistry, Brooks/Cole Publishing Company, 245
  5. Fieser, L. F. and Fieser, M. (1952), Textbook of Organic Chemistry, Maruzen Publishing Company, 241-245
  6. Yoshikawa, M., Izumi, J., Kitao, T., Koya, S., and Sakamoto, S. (1995), Molecularly Imprinted Polymeric Membranes for Optical Resolution, J. Membr. Sci. 108, 171-175 https://doi.org/10.1016/0376-7388(95)00160-8
  7. Yoshikawa, M., Izumi, J., Kitao, T., and Sakamoto, S. (1996), Molecularly Imprinted Polymeric Membranes Containing DIDE Derivatives for Optical Resolution of Amino Acids, Macromol. 29, 8197-8203 https://doi.org/10.1021/ma951716v
  8. Piletsky, S. A., Dubey, I. Y., Fedoryak, D. M., and Kukhar, V. P. (1990), Substrate-selective Polymeric Membranes. Selective Transfer of Nucleic Acid Components, Biopolym. Kletka. 6, 55-58
  9. Matsui, A., J., Takeuchi, T., Yano, K., Muguruma, H., Elgersma, A. V., and Karube, I. (1995), Recognition of Sialic Acid using Molecularly Imprinted Polymer. Anal. Lett. 28, 2317-2323 https://doi.org/10.1080/00032719508000375
  10. Hilal, N. and Kochkodan, V. (2003), Surface Modified Microfiltration Membranes with Molecularly Recognising Properties. J. Mem Sci. 213, 97-113 https://doi.org/10.1016/S0376-7388(02)00516-1
  11. Dabulis, K. and Klibanov, A. M. (1992), Molecular Imprinting of Proteins and Other Macromolecules Resulting in New Adsorbents. Biotechnol. Bioeng. 39, 176-185 https://doi.org/10.1002/bit.260390209
  12. Haginaka, J. and Kagawa, C. (2002), Uniformly Sized Molecularly Imprinted Polymer for d-chlorpheniramine Evaluation of Retention and Molecular Recognition Properties in an Aqueous Mobile Phase, J. Chromatogr. A. 948, 77-84 https://doi.org/10.1016/S0021-9673(01)01262-6
  13. Wang, H. Y., Xia, S. L., Sun, H., Liu, Y. K., Cao, S. K., and Kobayashi, T. (2004), Molecularly Imprinted Copolymer Membranes Functionalized by Phase Inversion Imprinting for Uracil Recognition and Permselective Binding, J. Chromatogr. B. 804, 127-134 https://doi.org/10.1016/j.jchromb.2004.01.036
  14. Reddy, P. S., Kobayashi, T., Abe, M., and Fujii N. (2002), Molecular Imprinted Nylon-6 as a Recognition Material of Amino Acids, Europ. Polym. J. 38, 521-529 https://doi.org/10.1016/S0014-3057(01)00212-9
  15. Kempe, M. and Mosbach, K. (1995), Separation of Amino Acids, Peptides and Proteins on Molecularly Imprinted Stationary Phase, J. Chromatogr. A. 691, 317-323 https://doi.org/10.1016/0021-9673(94)00820-Y
  16. Yoshikawa, M. and Izumi, J. (2003), Chiral Recognition Sites Converted from Tetrapeptide Derivatives Adsopting Racemates as Print Molecules, Macromol. Biosci. 3, 487-498 https://doi.org/10.1002/mabi.200350016
  17. Yoshikawa, M. J. and Izumi, T. Kitao, (1996), Enantioselective Electrodialysis of N-alpha-acetyltryptophans through Molecularly Imprinted Polymeric Membranes. Chem. Lett. 8, 611-612
  18. Kobayashi, T., Wang, H. Y., and Fujii, N. (1995), Molecular Imprinting of Theophylline in Acrylonitrile-Acrylic Acid Copolymer Membrane, Chem. Lett. 10, 927-928
  19. Kielczynski, R and Bryjak, M. (2005), Molecularly Imprinted Membranes for Cinchona Alkaloids Separation, Sep. Purifi. Tech. 41, 231-235 https://doi.org/10.1016/j.seppur.2004.03.021
  20. Ramamoorthy, M. and Ulbricht, M. (2003), Molecular Imprinting of Cellulose Acetate-sulfonated Polysulfone Blend Membranes for Rhodamine B by Phase Inversion Technique, J. Membr. Sci. 213, 207-214
  21. Trotta, F., Drioli, E., Baggiani, C., and Lacopo, D. (2002), Molecular Imprinted Polymeric Membrane for Narigin Recognition, J. Membr. Sci. 201, 77-84 https://doi.org/10.1016/S0376-7388(01)00705-0
  22. Petcu, M., Schaare, P. N., and Cook, C. J. (2004), Propofol-Imprinted Membranes with Potential Applications in Biosensors, Anal. Chim. Acta. 504, 73-79 https://doi.org/10.1016/S0003-2670(03)00673-1
  23. Hattori, K., Hiwatari, M., Iiyarna, C., Yoshimi, Y, Kohori, F., Sakai, K. and Piletsky, S. A. (2004), Gate Effect of Theophylline-Imprinted Polymers Grafted to the Cellulose by Living Radical Polymerization, J. Membr. Sci. 233, 169-173 https://doi.org/10.1016/j.memsci.2003.12.013
  24. Ramamoorthy, M. and Ulbricht, M. (2004), Evalution of Molecularly Imprinted Polymer Blend Filtration Membrane under Solid Phase Extraction Conditions, Sep. Purifi. Tech. 39, 211-219 https://doi.org/10.1016/j.seppur.2003.12.005
  25. Suedeea, R., Srichanab, T., Chuchomea, T., and Kongmarka, U. (2004), Use of Molecularly Imprinted Polymers from a Mixture of Tetracycline and its Degradation Products to Produce Affinity Membranes for the Removal of Tetracycline from Water, J. Chromatogr. B. 811, 191-200
  26. Donato, L., Figoil, A and Drioli, E. (2005), Novel Composite Poly(4-vinylpridine)/Polypropylene Membranes with Recognition Properties for (S)-naproxen, J. Pharm. Bio. Anal. 37, 1003-1008 https://doi.org/10.1016/j.jpba.2004.09.020
  27. Pilestsky, S. A., Piletskaya, E. V., Elgersma, A. V. Yano, K., and Karube, I. (1995), Atrazine Sensing by Molecularly Imprinted Membranes, Biosen. Bioelect. 10, 959-964 https://doi.org/10.1016/0956-5663(95)99233-B
  28. Sergeyeva, T. A., Matuschewski, H., Piletsky, S. A., Bendig, J., Schedler, U., and Ulbricht, M. (2001), Molecularly Imprinted Polymer Membrane for Substance-selective Soild-phase Extrantion from Water by Surface Photo-grafting Polymerization, J. Chromatogr. A. 907, 89-99 https://doi.org/10.1016/S0021-9673(00)01053-0
  29. Cheong, S. H., Sub, M. G., Park, J. K., and Karube, I. (1998), Selective Separation of Testosterone using Biofunctional Polymer, J. Kor. Ins. Chem. Eng. 36, 1, 27-33
  30. Cheong, S. H., McNiven, S., Rachkov, A., Levi, R. Yano, K., and Karube, I. (1997), Testosterone Receptor Binding Mimic Constructed Using Molecular Imprinting, Macromol. 30, 1317-1322 https://doi.org/10.1021/ma961014l
  31. Levi, R. S. McNiven, S. A. Piletsky, S. H. Cheong, K. Yano, and I. Karube (1997), Optical Detection of Chloramphenicol Using Molecularly Imprinted Polymers, Anal. Chem. 67, 11, 2017-2021
  32. McNiven, S., Yokobayashi, Y., Cheong, S. H., and Karube, I. (1997), Enhancing the Selectivity of Molecularly Imprinted Polymers. Chem. Lett. 12, 1297-1298
  33. Rachkov A. E., Cheong, S. H., El'skaya, A. V., Yano, K., and Karube, I. (1998), Molecularly Imprinted Polymers as Artificial Steroid Receptors, Polym. Adv. Technol. 9, 511-519 https://doi.org/10.1002/(SICI)1099-1581(199808)9:8<511::AID-PAT790>3.0.CO;2-H
  34. Cheong, S. H., Rachkov, A. E., Park, J. K., Yano, K., and Karube, I. (1998), Synthesis and Binding Properties of a Noncovalent Molecularly Imprinted Testosterone-Specific Polymer, J. Polym. Sci. : Part A : Polym. Chem. 36, 1725-1732 https://doi.org/10.1002/(SICI)1099-0518(199808)36:11<1725::AID-POLA5>3.0.CO;2-Q
  35. Gamez, P., Dunjic, B., Pinel, C., and Lemaire, M. (1995), 'Molecular Imprinting Effect' in the Synthesis of Immobilized Rhodium Complex Catalyst (IRC cat), Tetra. Lett. 36, 8779-8782 https://doi.org/10.1016/0040-4039(95)01874-H
  36. Araki, K., Maruyama, T., Kamiya, N., and Goto, M. (2005), Metal Ion-selective Membrane Prepared by Surface Molecular Imprinting J. Chromatogr. B. 818, 141-145 https://doi.org/10.1016/j.jchromb.2004.12.030
  37. Matsui, J., T. Kato, T. Takeuchi, M. Suzuki, K. Yokoyama, E. Tamiya, and I. Karube (1993), Molecular Recognition in Continuous Polymer Rods Prepared by a Molecular Imprinting Technique, Anal. Chem. 65, 2223-2224 https://doi.org/10.1021/ac00065a009
  38. Wang, H. Y., Kobayashi, Y., Fukaya, T., and Fujii, N. (1997), Molecular Imprint Membranes Prepared by the Phase Inversion Precipitation Technique. 2. Influence of Coagulation Temperature in the Phase Inversion Process on the Encoding in Polymeric Membranes, Langmuir. 13, 5396-5400 https://doi.org/10.1021/la970114x
  39. Reddy, P. S., Kobayashi, T., and Fujii, N. (2002), Recognition Characteristics of Dibenzofuran by Molecularly Imprinted Polymers Made of Common Polymers, Europ. Polym. J. 38, 779-785 https://doi.org/10.1016/S0014-3057(01)00231-2
  40. Matsui, J., Miyoshi, Y., Doblhoff-Dier, O., and Takeuchi, T. (1995), A Molecularly Imprinted Synthetic Polymer Receptor Selective for Atrazine, Anal. Chem. 67, 4404-4408 https://doi.org/10.1021/ac00119a032
  41. Kriz, D., Ramstrom, O., and Mosbach, K. (1997), Molecular Imprinting-New Possibilities for Sensor Technology, Anal. Chem. 69, 345A
  42. Mathew-Krotz, J. and Shea, K. J. (1996), Imprinted Polymer Membranes for the Selective Transport of Targeted Neutral Molecules, J. Am. Chem. Soc. 118, 8154-8155 https://doi.org/10.1021/ja954066j
  43. Hong, J. M., Andersson, P. E., Qian, J., and Martin, C. R. (1998), Selectively-Permeable Ultrathin Film Composite Membranes Based on Molecularly-Imprinted Polymers, Chme. Master. 10, 1029-1033
  44. Yoshigawa, M., Izumi, J. and Kitao, T. (1997), Enantioselective Electrodialysis of Amino Acids with Charged Polar Side Chains through Molecularly Imprinted Polymeric Membranes Containing DIDE Derivatives, Polym. J. 29, 205-210 https://doi.org/10.1295/polymj.29.205
  45. Wang, H. Y., Kobayashi, T., and Fujii, T. (1996), Molecular Imprint Membranes Prepared by the Phase Inversion Precipitation Technique, Langmuir. 12, 4850-4856 https://doi.org/10.1021/la960243y
  46. Kobayashi, T., H. Y. Wang, and N. Fujii (1998), Molecular Imprint Membranes of Polyacrylonitrile Copolymers with Different Acrylic Acid Segments, Anal. Chim. Acta. 365, 81-88 https://doi.org/10.1016/S0003-2670(97)00667-3
  47. Piletsky, S. A., Panasyuka, T. L., Piletskayaa, E. V., Nichollsb, I. A., and Ulbrichtc, M. (2001), Receptor and Transport Properties of Imprinted Polymer Membranes - a review, J. Mem. Sci. 157, 263-278 https://doi.org/10.1016/S0376-7388(99)00007-1
  48. Piletsky, S. A., Piletskaya, E. V., Panasyuk, T. L., El'skaya, A. V., Levi, R., Karube, I., and Wulff, G. (1998), Imprinted Membranes for Sensor Technology: Opposite Behavior of Covalently and Noncovalently Imprinted Membranes, Macromol. 31, 2137-2140 https://doi.org/10.1021/ma970818d
  49. Kim, S. J. (2004), 'Streo-selective Separation by Ultrafiltration Using D-phenylalanine Imprinted Membrane', MS Thesis, Kyungpook National University, Taegu, Korea
  50. Takeuchi T. and J. Matsui (1996), Molecular Imprinting : An Approach to Tailor Made Synthetic Polymers with Biomimetic Functions, Acta. polym. 47, 471-480 https://doi.org/10.1002/actp.1996.010471101
  51. Mayes, A. G. and Mosbach, K. (1996), Molecularly Imprinted Polymer Beads: Suspension Polymerization using a Liquid Perfluorocarbon as the Dispersing Phase, Anal. Chem. 68, 3769-3774 https://doi.org/10.1021/ac960363a
  52. Lehmann, M., Brunner, H., and Tovar, G. E. M. (2003), Selective Separations and Hydrodynamic Studies: a New Approach Using Molecularly Imprinted Nanosphere Composite Membranes, Desalination. 149, 315-321 https://doi.org/10.1016/S0011-9164(02)00754-3
  53. Lehmann, M., Brunner, H., and Tovar, G. E. M. (2003), Molekular Gepragte Nanopartikel als Selektive Phase in Komposit-Membrane: Hydrodynamik und Stofftrennung in Nanoskaligen Schuttungen, Chem. Ing. Thechn. 75, 149-153 https://doi.org/10.1002/cite.200390013
  54. Marx-Tibbon, S. and Willner, J. (1994), Photostimulated Imprinted Polymers: A Light-regulated Medium for Transport of Amino Acids, J. Chem. Soc., Chem. Commun. 1261-1262
  55. Mathew-Krotz, J. and Shea, K. J. (1996), Imprinted Polymer Membranes for the Selective Transport of Targeted Neutral Molecules, J. Am. Chem. Soc. 118, 8154-8155 https://doi.org/10.1021/ja954066j
  56. Sergeyeva, T. A., Piletsky, S. A., Brovko, A. A., Slinchenko, L. A., Sergeeva, L. M., Panasyuk, T. L., and El'skaya, A. V. (1999), Conductimetric Sensor for Atrazine Detection Based on Molecularly Imprinted Polymer Membranes, Analyst. 124, 331-334 https://doi.org/10.1039/a808484j
  57. Kimaro, A., Kelly, L. A., and Murray, G. M. (2001), Molecularly Imprinted Ionically Permeable Membrane for Uranyl Ion, Chem. Commun. 14, 1282-1283
  58. Yoshikawa, M., Izumi, J., and Kitao, T. (1999), Alternative Molecular Imprinting, a Facile Way to Introduce Chiral Recognition Sites, React. Funct. Polym. 42, 93-102 https://doi.org/10.1016/S1381-5148(98)00063-7
  59. Yoshikawa, M., Izumi, J., Guiver, M. D., and Robertson, G. P. (2001), Recognition and Selective Transport of Nucleic Acid Components through Molecularly Imprinted Polymeric Membranes, Macromol. Mater. Eng. 286, 52-59 https://doi.org/10.1002/1439-2054(20010101)286:1<52::AID-MAME52>3.0.CO;2-R
  60. Yoshikawa, M., Shimada, A., and Izumi, J. (2001), Novel Polymeric Membranes Having Chiral Recognition Sites Converted from Tripeptide Derivatives, Analyst. 126, 775-780 https://doi.org/10.1039/b009315g
  61. Kondo, Y. and Yoshikawa, M. (2001), Effect of Solvent Composition on Chiral Recognition Ability of Molecularly Imprinted DIDE Derivatives, Analyst. 126, 781-783 https://doi.org/10.1039/b009314i
  62. Yoshikawa, M., Izumi, J., Kitao, T., and Sakamoto, S. (1997), Alternative Molecularly Imprinted Polymeric Membranes from a Tetrapeptide Residue consisting of D- or L-Amino Acid, Macromol. Rapid Commun. 18, 761-767 https://doi.org/10.1002/marc.1997.030180902
  63. Yoshikawa, M., Ooi, T., and Izumi, J. (1999), Alternative Molecularly Imprinted Membranes from a Derivative of Natural Polymer, Cellulose Acetate, J. Appl. Polym. Sci. 72, 493-499 https://doi.org/10.1002/(SICI)1097-4628(19990425)72:4<493::AID-APP5>3.0.CO;2-U
  64. Yoshikawa, M., Izumi, J., Ooi, T., Kitao, T. Guiver, M. D., and Rovertson, G. P. (1998), Carboxylated Polysulfone Membranes Having a Chiral Recognition Site Induced by an Alternative Molecular Imprinting Technique, Polym. Bull. 40, 517-524 https://doi.org/10.1007/s002890050285
  65. Kobayashi, T., Reddy, P. S., Ohta, M., Abe, M., and N. Fujii (2003), Molecularly Imprinted Polysulfone Membranes Having Acceptor Sites for Donor Dibenzofuran as Novel Membrane Adsorbents: Charge Transfer Interaction as Recognition Origin, Chem. Mater. 14, 2499-2505 https://doi.org/10.1021/cm0109692
  66. Park, J. K., Kim, S. J., and Lee, J. W. (2003), Adsorption Selectivity of Phenylalanine Imprinted Polymer Prepared by the Wet Phase Inversion Method, Korea J. Chem. Eng. 20, 1066-1072 https://doi.org/10.1007/BF02706937
  67. Park, J. K. and Kim, S. J. (2004), Separation of Phenyalanine by Ultrafiltration Using D-Phe Imprinted Polyacrylonitrile-Poly(acrylic acid)-Poly(acryl amide) Terpolymer Membrane, Korea J. Chem. Eng. 21, 994-998 https://doi.org/10.1007/BF02705583
  68. Hong, J. M., Anderson, P. E., Qian, J., and Martin, C. R. (1998), Selectively-Permeable Ultrathin Film Composite Membranes Based on Molecularly-Imprinted Polymers, Chem. Master. 10, 1029-1033 https://doi.org/10.1021/cm970608f
  69. Hattori, K., Yoshimi, Y., and Sakai, K. (2001), Gate Effect of Cellulosic Dialysis Membrane Grafted with Molecularly Imprinted Polymer, J. Chem. Eng. Jpn. 34, 1466-1469 https://doi.org/10.1252/jcej.34.1466
  70. Wang, H. Y., Kobayashi, T., and Fujii, N. (1997), Surlace Molecular Imprinting on Photosensitive Dithiocarbamoylpolyacrylonitrile Membranes using Photograft Polymerization, J. Chem. Technol. Biotechnol. 70, 355-362 https://doi.org/10.1002/(SICI)1097-4660(199712)70:4<355::AID-JCTB793>3.0.CO;2-#
  71. Piletsky, S. A., panasyuk, T. L., Piletskaya, E. V., Nicholls, I. A., and Ulbricht, M. (1999), Receptor and Transport Properties of Imprinted Polymer Membranes, J. Mem. Sci. 157, 263-278 https://doi.org/10.1016/S0376-7388(99)00007-1
  72. Sellergren, B. and Hall, A. J. (2001), Molecularly Imprinted Polymers - Man-Made Mimics of Antibodies and Their Application in Analytical Chemistry, Elservier. 21
  73. Spivak, D. A. and Campbell, J. (2001), Systematic Study of Steric and Spatial Contributions to Molecular Recognition by Non-covalent Imprinted Polymer, Analyst. 126, 793-797 https://doi.org/10.1039/b010233o
  74. Sellegren, B. (1999), Polymer- and Template-related Factors Influencing the Efficiency in Molecularly Imprinted Solid-phase Extractions, TRAC-Trend Anal. Chem. 18, 164-174 https://doi.org/10.1016/S0165-9936(98)00117-4
  75. Zhang, T., Liu, P., Chen, W., Wang, J., and Li, K. (2001), Influence of Intramolecular Hydrogen Bond of Templates on Molecular Recognition of Molecularly Imprinted Polymers, Anal. Chim. Acta. 450, 53-61 https://doi.org/10.1016/S0003-2670(01)01390-3
  76. Piletsky, S. A., Matuschewski, H., Schedler, U., Wilpert, A., Piletska, E. V., Thiele, T. A., and Ulbricht, M. (2000), Surlace Functionalization of Porous Polypropylene Membranes with Molecularly Imprinted Polymers by Photograft Copolymerization in Water, Macromol. 33, 3092-3098 https://doi.org/10.1021/ma991087f
  77. Ulbrichta, M., Belter, M., Langenhangen, M., Schneider, F., and Weigel, W. (2002), Novel Molecularly Imprinted Polymer (MIP) Composite Membranes Via Controlled Surlace and Pore Functionalizations, Desalination. 149, 293-295 https://doi.org/10.1016/S0011-9164(02)00800-7
  78. Park, J. K., Oh, C. Y., and Seo, J. I. (2002), Selective Adsorption of a Symmetric Theophylline Imprinted Membrane Prepared by a Wet Phase Inversion Method, Korean J. Biotechnol. Bioeng. 17, 207-211