• Title/Summary/Keyword: Chelerythrine

Search Result 33, Processing Time 0.038 seconds

Inhibition of Acetylcholine-activated $K^+$ Current by Chelerythrine and Bisindolylmaleimide I in Atrial Myocytes from the Mice

  • Hana Cho;Youm, Jae-Boum;Earm, Yung-E;Ho, Won-Kyung
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2001.06a
    • /
    • pp.54-54
    • /
    • 2001
  • The effects of protein kinase C inhibitors, chelerythrine and bisindolylmaleimide I, on acetylcholine activated $K^{+}$ currents ( $I_{KACh}$) were examined in atrial myocytes of mice using patch clamp technique. Chelerythrine and bisindolylmaleimide I inhibited $I_{KACh}$ in reversible and dose-dependent manners. Half maximal effective concentrations were 0.49 $\pm$ 0.01 $\mu$M for chelerythrine and 98.69 $\pm$ 12.68 nM for bisindolylmaleimide I.(omitted)

  • PDF

The Involvement of Protein kinase C in Glutamate-Mediated Nociceptive Response at the Spinal Cord of Rats (흰쥐의 척수에서 Glutamate가 매개하는 Nociceptive Response에 있어서 Protein kinase C의 관련성)

  • 김성정;박전희;이영욱;양성준;이종은;이병천;손의동;허인회
    • YAKHAK HOEJI
    • /
    • v.43 no.2
    • /
    • pp.263-273
    • /
    • 1999
  • When glutamate was infected intrathecally, the result is similar to those produced by TPA injected. The involvement of protein kinase C (PKC) in the nociceptive responses in rat dorsal horn neurons of lumbar spinal cord was studied. In test with formalin, a PKC inhibitor (chelerythrine) inhibited dose-dependently the formalin-induced behavior response. Neomycin also inhibited it significantly. But, a PKC activator (12-O-tetradecanoylphorbol-13-ester, TPA) showed reverse effect. When gluatamate was injected intrathecally, we observed the result is smilar to those produced by TPA injection. On the other hand, intrathecal injection of glutamate induced thermal and mechanical hyperalgesia. In Tail-flick test, we examined the involvement of PKC on the glutamate-indeced thermal hyperalgesia. Chelerythrine showed an inhibitory effect and TPA enhanced thermal response. Glutamate decreased the mechanical threshold significantly. A pretreatment of chelerythrine and neomycin inhibited glutamate-induced mechanical hyperalgesia, but the effect of neomycin was not significant. TPA had little effect on the mechanical nociceptive response. These results suggest that the PKC activation through metabotropic receptor at postsynaptic region of spinal cord dorsal horn neurons may influence on the persistent nociception produced by chemical stimulation with formalin, thermal and mechanical hyperalgesia induced by glutamate.

  • PDF

Role of Adenosine and Protein Kinase C in the Anti-ischemic Process of Ischemic Preconditioning in Rat Heart (허혈전처치의 허혈심장 보호과정에서 Adenosine 및 Protein Kinase C의 역할)

  • You, Ho-Jin;Park, Jong-Wan;Kim, Myung-Suk
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.1
    • /
    • pp.31-37
    • /
    • 1996
  • The protective effect of 'ischemic preconditioning (IP)'on ischemia-reperfusion injury of heart has been reported in various animal species, but the mechanism is unclear. In an attempt to elucidate the mechanism of IP, we examined the effects of blockers against adenosine and protein kinase C in preconditioned heart of rat. The hearts perfused with oxygen-saturated Krebs-Henseleit solution by Langendorff method were exposed to 30 min global ischemia followed by 20 min reperfusion. IP was performed with three episodes of 5 min ischcmia and 5 min reperfusion just before ischemia-reperfusion. IP prevented the depression of contractile function and the myocardial contracture in the ischemic-reperfused heart and reduced the release of lactate dehydrogenase during the reperfusion period. Polymyxin B, chelerythrine and colchicine, PKC inhibitors, attenuated almost completely the anti-ischemic effect of IP, while adenosine receptor antagonists did not. These results indicate that PKC may be a crucial intracellular mediator in anti-ischemic action of IP in ischemic-reperfused rat heart, while adenosine may not be involved in the mechanism of IP.

  • PDF

Precursor Feeding Effects of Alkaloid Production in Suspension Cultures of Eschscholtzia californica (캘리포니아 양귀비(Eschscholtzia californica) 현탁세포배양에서 전구체가 알칼로이드 생성에 미치는 영향)

  • 주영운;김철변상요
    • KSBB Journal
    • /
    • v.8 no.5
    • /
    • pp.488-494
    • /
    • 1993
  • The accumulation of benzophenanthridine alkaloids, sanguinarine, chelerythrine, chelirubine and macarpine occurred in suspension cultures of Eschscholtzia californica. To increase alkaloid production, feeding experiments with the biosynthetic precursors, tyrosine, tyramine, L-dopa, dopamine with and without elicitation were studied. In feeding experiments with various precursors, the total alkaloid production was slightly increased. The precursor feeding with elicitation, however, increased total alkaloid production several times.

  • PDF

Direct effect of protein kinase C inhibitors on cardiovascular ion channels

  • Son, Youn-Kyoung;Hong, Da-Hye;Kim, Dae-Joong;Firth, Amy L.;Park, Won-Sun
    • BMB Reports
    • /
    • v.44 no.9
    • /
    • pp.559-565
    • /
    • 2011
  • Protein kinase C (PKC) is a central enzyme that modulates numerous biological functions. For this reason, specific PKC inhibitors/activators are required to study PKC-related signaling mechanisms. To date, although many PKC inhibitors have been developed, they are limited by poor selectivity and nonspecificity. In this review, we focus on the nonspecific actions of PKC inhibitors on cardiovascular ion channels in addition to their PKC-inhibiting functions. The aim of this paper is to urge caution when using PKC inhibitors to block PKC function. This information may help to better understand PKC-related physiological/biochemical studies.

Synthesis of Benzophenanthridine-Related Alkaloids (벤조펜안드리딘과 관련된 알칼로이드의 합성)

  • Kim, Sin-Kyu;Lee, Hyung-Won;Kim, In-Jong;Lee, Ma-Se
    • YAKHAK HOEJI
    • /
    • v.36 no.3
    • /
    • pp.250-254
    • /
    • 1992
  • Benzo[C]phenanthidine alkaloids were found to exhibit considerably strong antileukemic activies. These alkaloids have been shown to be biosynthesized from the corresponding alkaloids throung an oxidative $C_6-N$ bond cleavage followed by recyclization between $C_6\;and\;C_{13}$ position of the protoberberine. Recently we have achieved the biomimetic transformation of protoberberine alkaloid, berberine into benzo[C]phenanthridine alkaloid, chelerythrine.

  • PDF

Tyrosine Kinase is Involved in Hemin-Induced Pyresis

  • Lee, Sang-Ho;Jang, Choon-Gon;Lee, Seok-Yong
    • Archives of Pharmacal Research
    • /
    • v.26 no.5
    • /
    • pp.411-415
    • /
    • 2003
  • To investigate the mechanisms involved in hemin-induced febrile response, the rectal temperature of rats were measured after intracerebroventricular (i.c.v.) injections of hemin, with or without antagonists. Hemin ($10\mu\textrm{g}$) elicited a significant febrile response, which lasted from 30 min, to more than 6 h, after its administration, but this was not the case with biliverdin (i.c.v.) and bilirubin (i.c.v.). The hemin-induced febrile response was significantly inhibited by pretreatment with an inhibitor of tyrosine kinase (genistein), but not by pretreatment with an inhibitor of protein kinase C (chelerythrine) and a scavenger of iron (deferoxamine). These results suggest that tyrosine kinase is involved in the hemin-induced febrile response.

The Enhancement of Endotoxin-Induced Nitric Oxide Production by Elevation of Glucose Concentration in Macrophage

  • Woo, Hyun-Goo;Jung, Yi-Sook;Baik, Eun-Joo;Moon, Chang-Hyun;Lee, Soo-Hwan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.4
    • /
    • pp.447-454
    • /
    • 1999
  • The production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS) are known to be modulated by a variety of factors. Recent study showed that endotoxin-induced NO synthesis and iNOS expression were greatly enhanced by elevation of extracellular glucose concentration in murine macrophages. Although this was suggested to be due to the activation of protein kinase C (PKC) via sorbitol pathway, there was lack of evidence for this speculation. This study was performed to delineate the underlying intracellular mechanisms of glucose-enhancing effect on endotoxin-induced NO production in Raw264.7 macrophages. The levels of NO release induced by lipopolysaccharide (LPS) significantly increased by the treatment of glucose in a concentration dependent manner and also, this effect was observed in LPS-preprimed cells. Concurrent incubation of cells with PKC inhibitors, H-7 or chelerythrine, and LPS resulted in the diminution of NO production regardless of glucose concentration but this was not in the case of LPS-prepriming, that is, chelerythrine showed a minimal effect on the glucose- enhancing effect. PMA, a PKC activator, did not show any significant effect on glucose-associated NO production. Modulation of sorbitol pathway with zopolrestat, an aldose reductase inhibitor, did not affect LPS-induced NO production and iNOS expression under high glucose condition. And also, sodium pyruvate, which is expected to normalize cytosolic $NADH/NAD^+$ ratio, did not show any significant effect at concentrations of up to 10 mM. Glucosamine marginally increased the endotoxin-induced nitrite release in both control and high glucose treated group. 6-diazo-5-oxonorleucine (L-DON) and azaserine, glutamine: fructose- 6-phosphate amidotransferase (GFAT) inhibitors, significantly diminished the augmentation effect of high glucose on endotoxin-induced NO production. On the other hand, negative modulation of GFAT inhibitors was not reversed by the treatment of glucosamine, suggesting the minimal involvement, if any, of glucosamine pathway in glucose-enhancing effect. In summary, these results strongly suggest that the hexosamine biosynthesis pathway and the activation of PKC via sorbitol pathway do not contribute to the augmenting effect of high glucose on endotoxin induced NO production in macrophage-like Raw264.7 cells.

  • PDF