• Title/Summary/Keyword: Cheese phantom

Search Result 12, Processing Time 0.029 seconds

Evaluation of DQA for Tomotherapy using 3D Volumetric Phantom (3차원 체적팬텀을 이용한 토모치료의 Delivery Quality Assurance 평가)

  • Lee, Sang-Uk;Kim, Jeong-Koo
    • Journal of radiological science and technology
    • /
    • v.39 no.4
    • /
    • pp.607-614
    • /
    • 2016
  • The study investigates the necessity of 3 dimensional dose distribution evaluation instead of point dose and 2 dimensional dose distribution evaluation. Treatment plans were generated on the RANDO phantom to measure the precise dose distribution of the treatment site 0.5, 1, 1.5, 2, 2.5, 3 cm with the prescribed dose; 1,200 cGy, 5 fractions. Gamma analysis (3%/3 mm, 2%/2 mm) of dose distribution was evaluated with gafchromic EBT2 film and ArcCHECK phantom. The average error of absolute dose was measured at $0.76{\pm}0.59%$ and $1.37{\pm}0.76%$ in cheese phantom and ArcCHECK phantom respectively. The average passing ratio for 3%/3 mm were $97.72{\pm}0.02%$ and $99.26{\pm}0.01%$ in gafchromic EBT2 film and ArcCHECK phantom respectively. The average passing ratio for 2%/2 mm were $94.21{\pm}0.02%$ and $93.02{\pm}0.01%$ in gafchromic EBT2 film and ArcCHECK phantom respectively. There was a more accurate dose distribution of 3D volume phantom than cheese phantom in patients DQA using tomotherapy. Therefor it should be evaluated simultaneously 3 dimensional dose evaluation on target and peripheral area in rotational radiotherapy such as tomotherapy.

Enhancement of the Deformable Image Registration Accuracy Using Image Modification of MV CBCT (Megavoltage Cone-beam CT 영상의 변환을 이용한 변환 영상 정합의 정확도 향상)

  • Kim, Min-Joo;Chang, Ji-Na;Park, So-Hyun;Kim, Tae-Ho;Kang, Young-Nam;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.22 no.1
    • /
    • pp.28-34
    • /
    • 2011
  • To perform the Adaptive Radiation Therapy (ART), a high degree of deformable registration accuracy is essential. The purpose of this study is to identify whether the change of MV CBCT intensity can improve registration accuracy using predefined modification level and filtering process. To obtain modification level, the cheese phantom images was acquired from both kilovoltage CT (kV CT), megavoltage cone-beam CT (MV CBCT). From the cheese phantom images, the modification level of MV CBCT was defined from the relationship between Hounsfield Units (HUs) of kV CT and MV CBCT images. 'Gaussian smoothing filter' was added to reduce the noise of the MV CBCT images. The intensity of MV CBCT image was changed to the intensity of the kV CT image to make the two images have the same intensity range as if they were obtained from the same modality. The demon deformable registration which was efficient and easy to perform the deformable registration was applied. The deformable lung phantom which was intentionally created in the laboratory to imitate the changes of the breathing period was acquired from kV CT and MV CBCT. And then the deformable lung phantom images were applied to the proposed method. As a result of deformable image registration, the similarity of the correlation coefficient was used for a quantitative evaluation of the result was increased by 6.07% in the cheese phantom, and 18% in the deformable lung phantom. For the additional evaluation of the registration of the deformable lung phantom, the centric coordinates of the mark which was inserted into the inner part of the phantom were measured to calculate the vector difference. The vector differences from the result were 2.23, 1.39 mm with/without modification of intensity of MV CBCT images, respectively. In summary, our method has quantitatively improved the accuracy of deformable registration and could be a useful solution to improve the image registration accuracy. A further study was also suggested in this paper.

A Study of Usefulness for Megavoltage Computed Tomography on the Radiation Treatment Planning (메가볼트 에너지 전산화 단층 촬영을 이용한 치료계획의 유용성 연구)

  • Cho, Jeong-Hee;Kim, Joo-Ho;Khang, Hyun-Soo;Lee, Jong-Seok;Yoo, Beong-Gyu
    • Journal of radiological science and technology
    • /
    • v.33 no.4
    • /
    • pp.369-378
    • /
    • 2010
  • The purpose of this study was to investigate image differences between KVCT vs MVCT depending on a high densities metal included in the phantom and to analyze the r values for the purpose of the dose differences between each methods. We verified the possibilities for clinical indications that using MVCT is available for the radiation therapy treatment planning. Cheese phantom was used to get a density table for each CT and CT sinogram data was transferred to radiation planning computer through DICOM_RT. Using this data, the treatment dose plan has been calculated in RTP system. We compared the differences of r values between calculated and measured values, and then applied this data to the real patient's treatment planning. The contrast of MVCT image was superior to KVCT. In KVCT, each pixel which has more than 3.0 of density was difficult to be differentiated, but in MVCT, more than 5.0 density of pixels were distinguished clearly. With the normal phantom, the percentage of the case which has less than 1($r\leq1$, acceptable criteria) of gamma value, was 94.92% for KVCT and 93.87% for MVCT. But with the cheese phantom, which has high density plug, the percentage was 88.25% for KVCT and 93.77% for MVCT respectively. MVCT has many advantages than KVCT. Especially, when the patient has high density metal, such as total hip arthroplasty, MVCT is more efficient to define the anatomical structure around the high density implants without any artifacts. MVCT helps to calculate the treatment dose more accurately.

Extra Dose Measurement of Differential Slice Thickness of MVCT Image with Helical Tomotherapy (토모테라피 치료 시 MVCT Image의 Slice Thickness 차이에 따른 선량 비교)

  • Lee, Byungkoo;Kang, Suman
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.2
    • /
    • pp.145-149
    • /
    • 2013
  • Helical Tomotherapy is an innovative means of delivering intensity modulated radiation therapy (IMRT) using a device that merges features of a linear accelerator and helical computed tomography (CT) scanner. Hereat, during helical tomotherapy process, megavoltage computed tomography (MVCT) image are usually used for guiding the precise set-up of patient before/after treatment delivery. But which would certainly increase the total dose for patients, this study was to investigate the imaging dose of MVCT using the cylindrical "Cheese" phantom on a tomotherapy machine. A set of cylindrical "Cheese" phantom was adopted for scanning with respectively pitch value (1, 2, 3 mm) with same number slice (10 slice), same length (approximately 9 cm) and phantom set-ups on the couch of tomotherapy system. The average MVCT imaging dose were measured using A1SL ion chamber inserted in the phantom with preset geometry. The MVCT scanning average dose for the cylindrical "Cheese" phantom was 2.24 cGy, 1.02 cGy, 0.81 cGy during respectively pitch value (pitch 1, 2, 3 mm) with same number slice (10 slice), and same length's average dose was 2.47 cGy, 1.28 cGy, 0.88 cGy respectively (pitch 1, 2, 3 mm). Two major parameters, the assigned pitch numbers and scanning length, where the most important impacts to the dose variation. The MVCT dose was inversely proportional to the CT pitch value. The results may provide a reliable guidance for proper planning design of the scanning region, which is valuable to help minimize the extra dose to patient. Questionnaires were distributed to Radiology departments at hospitals with 300 sickbeds throughout the Pohang region of North Gyeongsang Province concerning awareness and performance levels of infection control. The investigation included measurements of the pollution levels of imaging equipment and assistive apparatuses in order to prepare a plan for the activation of prevention and management of hospital infections. The survey was designed to question respondents in regards to personal data, infection management prevention education, and infection management guidelines.

In Tomotherapy, for the Maintenance of Body Temperature due to Substance Use, Changes in Dose Assessment in the Organization (TOMO 치료 시 체온 유지를 위한 물질 사용에 따른 조직 내 선량 변화 평가)

  • Hwang, Jae-Woong;Jeong, Do-Hyeong;Kim, Dae-Woong;Yang, Jin-Ho;Choi, Gye-Suk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.22 no.2
    • /
    • pp.131-134
    • /
    • 2010
  • Purpose: TOMO therapy treatment for a relatively long run Beam time and temperature-sensitive detector, such as CT clinics in optimal temperature ($20~21^{\circ}$) to maintain a constant temperature in addition to its own Chamber Cooling system is activating. TOMO This clinic has been reduced in the patients' body temperature to keep the sheets and covers over the treated area. Therefore, these materials for any changes in the organization gives the dose were analyzed. Materials and Methods: To compare changes in the organization Dose Phantom cheese (Cheese Phantom) were used, CT-simulation taking the center point of the cheese phantom PTV (Planning Target Volume, treatment planning target volume) by setting Daily dose 200 cGy, 3 meetings planned treatment. PTV, PTV +7 cm, PTV +14 cm, the total count points on the phantom using the Ion chamber cover without any substance to measure the dose, and one of the most commonly used treatment, including the frequently used four kinds of bedding materials (febric 0.8 mm, gown 1.4 mm, rug, 3.3 mm, blanket 13.7 mm) and covered with a phantom and the dose measured at the same location were analyzed 3 times each. Results: PTV, PTV +7 cm, PTV +14 cm from the point of any substance measured in the state are covered with four kinds of materials (fabric, gown, rug, blanket) was measured in the covered states and compares their results, PTV respectively -0.17%, -0.44%, -0.53% and -0.9% change, PTV +7 cm, respectively -0.04%, +0.07%, +0.06%, +0.07%, were changed, PTV +14 cm, respectively 0%, -0.06%, -0.02%, +0.6%, respectively. Conclusion: These results TOMO treatment to patients to maintain their body mass by using PTV thickness of the material decreased in proportion to. PTV +7 cm, but showed slight changes in the point, PTV +14 cm at the point of the dose was increased a little. Sejijeom all the difference in treatment tolerance ${\pm}3%$ range, this is confirmed in the coming treatment will not affect the larger should be considered.

  • PDF

The evaluation for the usability ofthe Varian Standard Couch modelingusing Treatment Planning System (치료계획 시스템을 이용한 Varian Standard Couch 모델링의 유용성 평가)

  • Yang, yong mo;Song, yong min;Kim, jin man;Choi, ji min;Choi, byeung gi
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.28 no.1
    • /
    • pp.77-86
    • /
    • 2016
  • Purpose : When a radiation treatment, there is an attenuation by Carbon Fiber Couch. In this study, we tried to evaluate the usability of the Varian Standard Couch(VSC) by modeling with Treatment Planning System (TPS) Materials and Methods : VSC was scanned by CBCT(Cone Beam Computed Tomography) of the Linac(Clinac IX, VARIAN, USA), following the three conditions of VSC, Side Rail OutGrid(SROG), Side Rail InGrid(SRIG), Side Rail In OutSpine Down Bar(SRIOS). After scan, the data was transferred to TPS and modeled by contouring Side Rail, Side Bar Upper, Side Bar Lower, Spine Down Bar automatically. We scanned the Cheese Phantom(Middelton, USA) using Computed Tomography(Light Speed RT 16, GE, USA) and transfer the data to TPS, and apply VSC modeled previously with TPS to it. Dose was measured at the isocenter of Ion Chamber(A1SL, Standard imaging, USA) in Cheese Phantom using 4 and 10 MV radiation for every $5^{\circ}$ gantry angle in a different filed size($3{\times}3cm^2$, $10{\times}10cm^2$) without any change of MU(=100), and then we compared the calculated dose and measured dose. Also we included dose at the $127^{\circ}$ in SRIG to compare the attenuation by Side Bar Upper. Results : The density of VSC by CBCT in TPS was $0.9g/cm^3$, and in the case of Spine Down Bar, it was $0.7g/cm^3$. The radiation was attenuated by 17.49%, 16.49%, 8.54%, and 7.59% at the Side Rail, Side Bar Upper, Side Bar Lower, and Spine Down Bar. For the accuracy of modeling, calculated dose and measured dose were compared. The average error was 1.13% and the maximum error was 1.98% at the $170^{\circ}beam$ crossing the Spine Down Bar. Conclusion : To evaluate the usability for the VSC modeled by TPS, the maximum error was 1.98% as a result of compassion between calculated dose and measured dose. We found out that VSC modeling helped expect the dose, so we think that it will be helpful for the more accurate treatment.

  • PDF

Improvement of the Dose Calculation Accuracy Using MVCBCT Image Processing (Megavoltage Cone-Beam CT 영상의 변환을 이용한 선량 계산의 정확성 향상)

  • Kim, Min-Joo;Cho, Woong;Kang, Young-Nam;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.23 no.1
    • /
    • pp.62-69
    • /
    • 2012
  • The dose re-calculation process using Megavoltage cone-beam CT images is inevitable process to perform the Adaptive Radiation Therapy (ART). The purpose of this study is to improve dose re-calculation accuracy using MVCBCT images by applying intensity calibration method and three dimensional rigid body transform and filtering process. The three dimensional rigid body transform and Gaussian smoothing filtering process to MVCBCT Rando phantom images was applied to reduce image orientation error and the noise of the MVCBCT images. Then, to obtain the predefined modification level for intensity calibration, the cheese phantom images from kilo-voltage CT (kV CT), MVCBCT was acquired. From these cheese phantom images, the calibration table for MVCBCT images was defined from the relationship between Hounsfield Units (HUs) of kV CT and MVCBCT images at the same electron density plugs. The intensity of MVCBCT images from Rando phantom was calibrated using the predefined modification level as discussed above to have the intensity of the kV CT images to make the two images have the same intensity range as if they were obtained from the same modality. Finally, the dose calculation using kV CT, MVCBCT with/without intensity calibration was applied using radiation treatment planning system. As a result, the percentage difference of dose distributions between dose calculation based on kVCT and MVCBCT with intensity calibration was reduced comparing to the percentage difference of dose distribution between dose calculation based on kVCT and MVCBCT without intensity calibration. For head and neck, lung images, the percentage difference between kV CT and non-calibrated MVCBCT images was 1.08%, 2.44%, respectively. In summary, our method has quantitatively improved the accuracy of dose calculation and could be a useful solution to enhance the dose calculation accuracy using MVCBCT images.

Depth Dose According to Depth during Cone Beam Computed Tomography Acquisition and Dose Assessment in the Orbital Area Using a Three-Dimensional Printer

  • Min Ho Choi;Dong Yeon Lee;Yeong Rok Kang;Hyo Jin Kim
    • Journal of Radiation Protection and Research
    • /
    • v.49 no.2
    • /
    • pp.68-77
    • /
    • 2024
  • Background: Cone beam computed tomography (CBCT) is essential for correcting and verifying patient position before radiation therapy. However, it poses additional radiation exposure during CBCT scans. Therefore, this study aimed to evaluate radiological safety for the human body through dose assessment for CBCT. Materials and Methods: For CBCT dose assessment, the depth dose was evaluated using a cheese phantom, and the dose in the orbital area was evaluated using a human body phantom self-fabricated with a three-dimensional printer. Results and Discussion: The evaluation of radiation doses revealed maximum doses of 14.14 mGy and minimum doses of 6.12 mGy for pelvic imaging conditions. For chest imaging conditions, the maximum doses were 4.82 mGy, and the minimum doses were 2.35 mGy. Head imaging conditions showed maximum doses of 1.46 mGy and minimum doses of 0.39 mGy. The eyeball doses using a human body phantom model averaged at 2.11 mGy on the left and 2.19 mGy on the right. The depth dose ranged between 0.39 mGy and 14.14 mGy, depending on the change in depth for each imaging mode, and the average dose in the orbit area using a human body phantom was 2.15 mGy. Conclusion: Based on the experimental results, CBCT did not significantly affect the radiation dose. However, it is important to maintain a minimal radiation dose to optimize radiation protection following the as low as reasonable achievable principle.

Superficial Dosimetry for Helical Tomotherapy (토모테라피를 이용한 표면 치료 계획과 선량 분석)

  • Kim, Song-Yih;You, Sei-Hwan;Song, Tae-Soo;Kim, Yong-Nam;Keum, Ki-Chang;Cho, Jae-Ho;Lee, Chang-Geol;Seong, Jin-Sil
    • Radiation Oncology Journal
    • /
    • v.27 no.2
    • /
    • pp.103-110
    • /
    • 2009
  • Purpose: To investigate the feasibility of helical tomotherapy on a wide curved area of the skin, and its accuracy in calculating the absorbed dose in the superficial region. Materials and Methods: Two types of treatment plans were made with the cylinder-shaped 'cheese phantom'. In the first trial, 2 Gy was prescribed to a 1-cm depth from the surface. For the other trial, 2 Gy was prescribed to a 1-cm depth from the external side of the surface by 5 mm. The inner part of the phantom was completely blocked. To measure the surface dose and the depth dose profile, an EDR2 film was inserted into the phantom, while 6 TLD chips were attached to the surface. Results: The film indicated that the surface dose of the former case was 118.7 cGy and the latter case was 130.9 cGy. The TLD chips indicated that the surface dose was higher than these, but it was due to the finite thickness of the TLD chips. In the former case, 95% of the prescribed dose was obtained at a 2.1 mm depth, while the prescribed does was at 2.2 mm in the latter case. The maximum dose was about 110% of the prescribed dose. As the depth became deeper, the dose decreased rapidly. Accordingly, at a 2-cm depth, the dose was 20 % of the prescribed dose. Conclusion: Helical tomotherapy could be a useful application in the treatment of a wide area of the skin with curvature. However, for depths up to 2 mm, the planning system overestimated the superficial dose. For shallower targets, the use of a compensator such as a bolus is required.

Performance Evaluation of Radiochromic Films and Dosimetry CheckTM for Patient-specific QA in Helical Tomotherapy (나선형 토모테라피 방사선치료의 환자별 품질관리를 위한 라디오크로믹 필름 및 Dosimetry CheckTM의 성능평가)

  • Park, Su Yeon;Chae, Moon Ki;Lim, Jun Teak;Kwon, Dong Yeol;Kim, Hak Joon;Chung, Eun Ah;Kim, Jong Sik
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.32
    • /
    • pp.93-109
    • /
    • 2020
  • Purpose: The radiochromic film (Gafchromic EBT3, Ashland Advanced Materials, USA) and 3-dimensional analysis system dosimetry checkTM (DC, MathResolutions, USA) were evaluated for patient-specific quality assurance (QA) of helical tomotherapy. Materials and Methods: Depending on the tumors' positions, three types of targets, which are the abdominal tumor (130.6㎤), retroperitoneal tumor (849.0㎤), and the whole abdominal metastasis tumor (3131.0㎤) applied to the humanoid phantom (Anderson Rando Phantom, USA). We established a total of 12 comparative treatment plans by the four geometric conditions of the beam irradiation, which are the different field widths (FW) of 2.5-cm, 5.0-cm, and pitches of 0.287, 0.43. Ionization measurements (1D) with EBT3 by inserting the cheese phantom (2D) were compared to DC measurements of the 3D dose reconstruction on CT images from beam fluence log information. For the clinical feasibility evaluation of the DC, dose reconstruction has been performed using the same cheese phantom with the EBT3 method. Recalculated dose distributions revealed the dose error information during the actual irradiation on the same CT images quantitatively compared to the treatment plan. The Thread effect, which might appear in the Helical Tomotherapy, was analyzed by ripple amplitude (%). We also performed gamma index analysis (DD: 3mm/ DTA: 3%, pass threshold limit: 95%) for pattern check of the dose distribution. Results: Ripple amplitude measurement resulted in the highest average of 23.1% in the peritoneum tumor. In the radiochromic film analysis, the absolute dose was on average 0.9±0.4%, and gamma index analysis was on average 96.4±2.2% (Passing rate: >95%), which could be limited to the large target sizes such as the whole abdominal metastasis tumor. In the DC analysis with the humanoid phantom for FW of 5.0-cm, the three regions' average was 91.8±6.4% in the 2D and 3D plan. The three planes (axial, coronal, and sagittal) and dose profile could be analyzed with the entire peritoneum tumor and the whole abdominal metastasis target, with planned dose distributions. The dose errors based on the dose-volume histogram in the DC evaluations increased depending on FW and pitch. Conclusion: The DC method could implement a dose error analysis on the 3D patient image data by the measured beam fluence log information only without any dosimetry tools for patient-specific quality assurance. Also, there may be no limit to apply for the tumor location and size; therefore, the DC could be useful in patient-specific QAl during the treatment of Helical Tomotherapy of large and irregular tumors.