• Title/Summary/Keyword: Charring Material

Search Result 16, Processing Time 0.023 seconds

Estimation of the Properties for a Charring Material Using the RPSO Algorithm (RPSO 알고리즘을 이용한 탄화 재료의 열분해 물성치 추정)

  • Chang, Hee-Chul;Park, Won-Hee;Yoon, Kyung-Beom;Kim, Tae-Kuk
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.1
    • /
    • pp.34-41
    • /
    • 2011
  • Fire characteristics can be analyzed more realistically by using more accurate properties related to the fire dynamics and one way to acquire these fire properties is to use one of the inverse property estimation techniques. In this study two optimization algorithms which are frequently applied for the inverse heat transfer problems are selected to demonstrate the procedure of obtaining pyrolysis properties of charring material with relatively simple thermal decomposition. Thermal decomposition is occurred at the surface of the charring material heated by receiving the radiative energy from external heat sources and in this process the heat transfer through the charring material is simplified by an unsteady 1-dimensional problem. The basic genetic algorithm(GA) and repulsive particle swarm optimization(RPSO) algorithm are used to find the eight properties of a charring material; thermal conductivity(virgin, char), specific heat(virgin, char), char density, heat of pyrolysis, pre-exponential factor and activation energy by using the surface temperature and mass loss rate history data which are obtained from the calculated experiments. Results show that the RPSO algorithm has better performance in estimating the eight pyrolysis properties than the basic GA for problems considered in this study.

Carbon Medicine in Ancient China

  • Yang, Hongyan;Fu, Zengxiang;Huang, Xingli;Ma, Binrui
    • Carbon letters
    • /
    • v.6 no.4
    • /
    • pp.255-256
    • /
    • 2005
  • In traditional Chinese medicine, some herbs are used after toasting or roasting. The process is called "Zhi Tan" in Chinese, which means charring, and the herbs after the treatment is called carbon medicine. Carbon medicine is widely used to arrest bleeding in traditional Chinese medicine. The paper introduces the records, development and applications of carbon medicine in ancient China. The earliest record found about carbon medicine was in the remains of Han dynasty (BC206-A.D.8). The paper also introduces the process of charring herbs and mechanism of carbon medicine in arresting bleeding. Calcium iron and tan released during the charring are believed as main factors for arresting bleeding, helped with porous surface structure of active carbon.

  • PDF

A Numerical Study of Heat and Mass Transfer Phenomena for Thermal Protection Material (열보호재료의 열 및 물질전달 현상에 관한 수치해석적 연구)

  • Kim, Jung-Hoon;Kwon, Chang-Oh;Seo, Jeong-Il;Bai, Cheol-Ho;Song, Dong-Joo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.9
    • /
    • pp.1201-1212
    • /
    • 1999
  • A numerical analysis is performed to predict the thermal response and ablation rate for charring or non-charring material which is designed to be used as thermal protection system (TPS). The numerical program composed of in-depth energy balance equation and the aerotherm chemical equilibrium (ACE) program. The ACE program calculates various thermochemical state from ablation products. The developed numerical program is verified by comparing the reported results from literature. The sensitivity tests for input parameters are performed. The thermal behavior of ablating material is mainly affected by density of ablating material, convective heat transfer coefficient and recovery enthalpy of flow field.

Heat and Material Transport Analysis on the Head of Vehicle along the Flight Trajectory (비행궤적에 따른 비행체 앞부분의 열 및 물질전달해석)

  • 서정일;송동주
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.88-96
    • /
    • 2002
  • The CSCM Upwind method and Material Transport Analysis(MTA) have been used to predict the thermal response and shape changes for charring/non-charring material which can be used as thermal protection material(TPM) on blunt-body nose tip. We performed intensive flight trajectory simulations to compare 1-D MTA results with those of 2-D/Axisymmetric MTA by using MTAs and Navier-Stokes code. Theheat-transfer rate and pressure distribution were predicted at selected altitudes and wall temperature along the flight trajectory and the shape changes of blunt-body nose tip were predicted subsequently by using current procedure.

Numerical Analysis of 1-D Ablation and Charring of a Composite Heat Insulator Using Finite Analytic Method (유한해석법을 이용한 조합 내열부품의 1차원 삭마 및 숯층 형성 해석)

  • 함희철;배주찬;이태호;전광민;이진호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.943-951
    • /
    • 1992
  • The objectives of this study are to analyse the thermal response behavior occurring in the charring ablative material more realistically by considering ablation and char phenomena occurring in several material layers, and to increase the reliability of thermal analysis by being able to get stable solutions through using the finite analytic method. A program has been developed to predict the temperature distribution, ablation thickness, char thickness, ablation velocity and char velocity by solving non-linear one-dimensional heat conduction equation. Results of calculation were compared with results of published papers. From this compariosn this program was proved to be a very good tool for thermal design and analysis of charring ablative materials used in the rocket propulsion system.

A Study of Aero-thermodynamic Ablation Characteristics for Rocket Nozzle (로켓노즐내부의 공기 열역학적 삭마특성에 관한 연구)

  • Seo, J.I.;Jeong, J.H.;Kim, Y.I.;Kim, J.H.;Song, D.J.;Bai, C.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.282-287
    • /
    • 2001
  • The CSCM Upwind method and Material Transport Analysis (MTA) have been used to predict the thermal response and ablation rate for non-charring material to be used as thermal protection material (TPM) in KSR-III test rocket nozzle. The thermal boundary conditions such as cold wall heat-transfer rate and recovery enthalpy for MTA code are obtained from the upwind Navier-Stokes solution procedure. The heat transfer rate and temperature variations at rocket nozzle wall were studied with shape change of the nozzle surface as time goes by. The surface recession was severely occurred at nozzle throat and this affected nozzle performance such as thrust coefficient substantially.

  • PDF

추진기관에 사용되는 내열 복합재료

  • Jeong, Bal
    • Defense and Technology
    • /
    • no.9 s.163
    • /
    • pp.46-50
    • /
    • 1992
  • 고온, 고압의 추진제 연소가스로부터 노즐 구조물을 보호하기 위해 사용되는 열 차폐용 삭마성 내열재료(ablative material)의 종류와 재료선정을 위한 시험방법, 설계 및 제작기법, 성능평가 기준 등에 관한 연구동향을 검토하고 본 연구팀의 연구결과를 제시하였습니다 고체추진제 연소 환경하에서의 노즐 보호재료로서는 고분자계 삭마성 내열재가 주로 사용되는데, 이 ablative material에는 여러 종류가 있으나 높은 heat flux와 빠른 mass flow에 대한 내열을 위해서는 페놀, 폴리이미드 등 열경화성 수지인 charring material이 모재로 주로 사용되며 강도향상을 위해서 탄소, 실리카, 석면, 유리등의 강화섬유가 보강재로 사용됩니다 현재는 모재로서 고분자계 수지외에도 세라믹과 같은 무기재료, 금속재료등과 강화섬유를 조합하여 내열성과 강도가 향상된 재료를 개발하는 연구도 진행되고 있습니다

  • PDF

Estimation of Fire Dynamics Properties for Charring Material Using a Genetic Algorithm (유전 알고리즘을 이용한 탄화 재료의 화재 물성치 추정)

  • Chang, Hee-Chul;Park, Won-Hee;Lee, Duck-Hee;Jung, Woo-Sung;Son, Bong-Sei;Kim, Tae-Kuk
    • Fire Science and Engineering
    • /
    • v.24 no.2
    • /
    • pp.106-113
    • /
    • 2010
  • Fire characteristics can be analyzed more realistically by using more accurate material properties related to the fire dynamics and one way to acquire these fire properties is to use one of the inverse property analyses. In this study the genetic algorithm which is frequently applied for the inverse heat transfer problems is selected to demonstrate the procedure of obtaining fire properties of the solid charring material with relatively simple chemical structure. The thermal decomposition on the surface of the test plate is occurred by receiving the radiative energy from external heat sources, and in this process the heat transfer through the test plate can be simplified by an unsteady 1-D problem. The inverse property analysis based on the genetic algorithm is then applied for the estimation of the properties related to the reaction pyrolysis. The input parameters for the analysis are the surface temperature and mass loss rate of the char plate which are determined from the unsteady 1-D analysis with a givenset of 8 properties. The estimated properties using the inverse analysis based on the genetic algorithm show acceptable agreements with the input properties used to obtain the surface temperature and mass loss rate with errors between 1.8% for the specific heat of the virgin material and 151% for the specific heat of the charred material.

Coupled Analysis of Structure and Surface Ablation in Solid Rocket Nozzle (삭마반응을 고려한 고체 추진기관 노즐 조립체의 열반응 및 구조해석)

  • Kim, Yun-Chul;Doh, Young-Dae;Hahm, Hee-Cheol;Moon, Soon-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.565-569
    • /
    • 2011
  • A two-dimensional thermal response and ablation analysis code for predicting charring material ablation and shape change on solid rocket nozzle is presented. For closing the problem of thermo-structural analysis, Arrhenius' equation and Zvyagin's ablation model are used. The moving boundary problem are solved by remeshing-rezoning method. For simulation of complicated thermal protection systems, this method is integrated with a three-dimensional finite-element thermal and structure analysis code.

  • PDF

Thermal decomposition and ablation analysis of solid rocket propulsion (삭마 및 열분해 반응을 고려한 고체 추진기관의 열해석)

  • Kim, Yun-Chul
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.113-122
    • /
    • 2010
  • A two-dimensional thermal response and ablation analysis code for predicting charring material ablation and shape change on solid rocket nozzle is presented. For closing the problem of thermal analysis, Arrhenius' equation and Zvyagin's ablation model are used. The moving boundary problem are solved by remeshing-rezoning method. For simulation of complicated thermal protection systems, this method is integrated with a three-dimensional finite-element thermal and structure analysis code through continuity of temperature and heat flux.

  • PDF