• 제목/요약/키워드: Charging Standard

검색결과 68건 처리시간 0.034초

ISO 15118 충전 사용자 자동인증을 위한 교차인증서 기술의 적용에 관한 연구 (A Study on the Application of Cross-Certification Technology for the Automatic Authentication of Charging Users in ISO 15118 Standard)

  • 이수정;신민호;장혁수
    • 한국전자거래학회지
    • /
    • 제25권2호
    • /
    • pp.1-14
    • /
    • 2020
  • ISO 15118은 전기자동차와 전기차 충전기 사이의 통신을 정의하는 국제 표준이다. 또한 충전 서비스를 이용할 때 사용자를 자동인증하는 기술로써 Plug & Charge(PnC)를 정의하였다. PnC는 전기차 사용자 인증, 충전, 요금 청구 등의 모든 과정이 자동으로 처리되는 자동인증기술을 말한다. 표준에 따르면 충전기와 CPS(Certificate Provisioning Service)의 인증서는 V2G(Vehicle to Grid) Root 인증서의 아래에 있어야 한다. 한국의 경우 한국전력공사가 자체적으로 PKI(Public Key Infrastructure)를 운영하고 있으므로 한전이 제공하는 충전기는 V2G Root 인증서의 아래에 있는 것이 어렵다. 따라서 서로 다른 Root 인증서를 가지고 있을 때에도 인증이 가능한 방법이 필요하다. 본 논문에서는 이를 위해 PnC 방식의 인증에 교차 인증서의 적용을 제안한다. 교차 인증서 자동인증은 서로 다른 Root 인증서를 가지더라도 인증이 가능하도록 Root CA의 교차 인증서를 발급하고 인증서 체인에 포함시켜 자동인증을 진행하는 것이다. 교차 인증서 기술을 적용하면 다른 Root 인증서의 아래에 있는 인증서의 검증을 가능하도록 해준다. 본 논문에서는 PnC 방식과 교차 인증서를 적용한 PnC 방식의 자동인증을 구현하여, 두 가지 방식이 모두 사용 가능함을 증명하는 개념 증명을 진행한다. 개발 요구사항과 인증서 프로파일, 사용자 인증 시퀀스를 작성하고, 이에 따라 구현, 실행한다. 이 실험을 통해 두 가지의 자동인증이 실행 가능하고, 특히 교차 인증서를 적용한 PnC 방식의 자동인증의 확장성이 뛰어남을 확인한다.

전기 자동차 충전기의 고장진단을 위한 휴대형 스마트 시험기에 관한 연구 (A Study on Portable Smart Tester for Fault Diagnosis of Electric Vehicle Charger)

  • 김철수;백수황
    • 한국전자통신학회논문지
    • /
    • 제14권1호
    • /
    • pp.161-168
    • /
    • 2019
  • 오늘날 탄소 및 배기가스 저감을 위한 해결책으로 전기자동차의 개발 및 보급이 증가하고 있다. 국내에서는 환경부 주관으로 전기 자동차의 보급과 충전기의 확충이 해마다 빠른 속도로 증가하고 있다. 본 논문에서는 전기 자동차 충전기의 보급과정에서 필연적으로 나타나는 고장에 관한 문제를 해결하기 위하여 전기 자동차 및 충전기 양쪽의 충전관련 고장에 대한 신속한 점검을 가능하게 하는 휴대용 스마트 시험 기술에 대하여 연구하였다. 전기 자동차 및 충전기 간의 통신 프로토콜의 정상동작을 검증하기 위해 하드웨어 모듈과 소프트웨어를 구성하였으며, V2G 기술까지 고려된 국제 표준규격에 기반을 둔 휴대용 시험기를 개발하여 시험 평가하였다.

ISO/IEC 15118기반 V2G 환경에서 전기자동차 유연성 검토 (EV Flexibility Availability for V2G Considering ISO/IEC 15118 Charging Protocol)

  • 이상환;조규상;이상영;김영우;손성용
    • 한국정보전자통신기술학회논문지
    • /
    • 제14권1호
    • /
    • pp.91-97
    • /
    • 2021
  • 전기자동차를 이용하여 계통에 전력을 공급하는 Vehicle to Grid(V2G)의 구현을 위한 통신표준으로 ISO/IEC 15118이 적용되고 있다. 통신 프로토콜에 기반을 두는 전기자동차의 충방전 제어 시에 필연적으로 충방전 실행까지의 시간지연이 발생하게 되는데, 이러한 시간지연은 전력 유연성 공급 측면에서 제한의 요인이 된다. 본 연구에서는 ISO/IEC 15118 기반 V2G 에뮬레이터를 구현하고 전기 자동차 충방전 제어에 따른 반응성을 확인하였다. 실험결과 시간지연은 0.12ms로 나타났으며, 이를 기반으로 현 표준 하에서 참여 가능한 전력 유연성 시장에 대하여 검토하였다.

모바일 충전회로에서 EFT/B 신호의 전달특성 예측에 대한 연구 (Prediction of EFT/B Signal Transfer Characteristics in Mobile Charging Circuit)

  • 송승제;김광호;조정민;이승배;김소영;나완수
    • 한국전자파학회논문지
    • /
    • 제26권10호
    • /
    • pp.895-906
    • /
    • 2015
  • 본 논문에서는 모바일 충전회로를 대상으로 IEC 규격의 EFT/B(Electric Fast Transient and Burst) 내성 시험을 수행할 때 전달되는 신호를 예측할 수 있는 방법론 및 모델을 제안한다. EFT/B 신호는 모바일 충전회로가 충전 중인 상태에서 전달되기 때문에 교류전원 단에서 부터 부하 단까지의 신호전달특성을, 모바일 충전회로에 교류전원이 연결된 상태에서 알아야할 필요가 있다. 이를 위하여 간단한 CDN(Coupling-Decoupling Network)을 설계 제작하였으며, 이것을 이용하여 교류전원이 연결되어 있을 때와 연결되어 있지 않을 때의 두 가지 경우에 대해서 모바일 충전회로의 S-parameter를 VNA(Vector Network Analyzer)를 이용하여 측정하였다. 그 결과, 측정된 모바일 충전회로의 S-parameter 특성은 전원의 연결 유무와 거의 무관하였으며, 이것을 근거로 하여 모바일 충전회로만의 전달특성을, 전원이 연결되지 않은 상태에서, 적절한 인터페이스를 제작하여 측정하였다. 실제 EFT/B 신호 입출력의 전달함수를 구하여 S-parameter 측정의 정확성을 검증하였다. 이렇게 측정된 특성을 이용하여 모바일 충전회로의 EFT/B 신호가 전달되는 특성을 효과적으로 예측할 수 있었음을 보였다.

전기자동차 충전부하의 이동성을 고려한 전송 전력량의 해석 및 개선 (Analysis and improvement of transfer power capability considering movable load charging of EV)

  • 김덕영
    • 한국산학기술학회논문지
    • /
    • 제18권12호
    • /
    • pp.762-767
    • /
    • 2017
  • 본 논문은 전기자동차의 충전부하 이동성에 의한 전력시스템 선로에서의 전송전력에 대한 해석과 개선에 대한 내용을 제시하였다. 전기자동차는 화석연료의 고갈과 환경보호의 중요성이라는 측면에서 사용범위가 크게 늘어나고 있으며, 가까운 미래에 가솔린 연료를 사용하는 운송수단을 대체할 것으로 예상되고 있다. 기존의 예측된 고정 부하량에 기초한 전력시스템에서 전기자동차의 이동성 충전부하는 특정 지역에서 이동성 충전부하의 증가로 인한 전송선로에서의 전송전력 집중과 과부하의 문제를 발생시킨다. 이러한 현상의 해석을 위해 New England 시험계통을 부하특성을 기반으로 4개의 지역으로 분할하여 전기자동차 충전부하의 이동을 고려한 예상 시나리오를 가정하였다. 예상 시나리오에서는 표준이 되는 전기자동차의 충전용량을 고려하여 지역단위의 부하량을 최대 31%까지 증가하면서 선로에서의 전송전력 집중과 과부하 현상을 해석하였다. 이러한 선로에서의 과부하 문제에 대한 해결책으로 TCSC를 과부하가 발생한 선로에 직렬 연결하여 선로의 전송전력을 선로제한값 보다 작은 부하율 100% 이내의 값으로 직접 제어할 수 있도록 하였다. 시뮬레이션 결과로부터 전력시스템에 몇 개의 TCSC를 적용함으로써 전기자동차의 이동성 부하 충전에 의한 선로에서의 전송전력 문제를 효과적으로 그리고 경제적으로 해결할 수 있음을 보였다.

0.25/100 ${\mu}s$ 후속 단시간 뇌격전류 발생기 회로 기술 (Study on Generator Design for Subsequent Negative Stroke of 0.25/100 ${\mu}s$)

  • 이태형;조성철;엄주홍
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1632-1633
    • /
    • 2011
  • In IEC 62305-1 standard, the simple circuit consisting of RLC is used in order to form the fast rise time of 0.25/100 ${\mu}s$. But this circuit is very expensive system because the system is needed very high charging voltage up to 3.5 MV. In this paper, we suggest the generator which generates the current up to 10 kA by using the low charging voltage of the dozen kV. Therefore the generator was installed then we compared measure results with calculated results.

  • PDF

IEC60265-1에 의한 케이블 충전전류 시험을 위한 최적 회로 조건 선정 (The Optimal Circuit Condition Selection for Cable Charging Current Test by IEC60265-1)

  • 김갑동;허용석;윤지호;이희철;함길호;박종화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 A
    • /
    • pp.264-266
    • /
    • 2001
  • We must consider resistance capacitance and their circuit connection condition for cable charging current test by IEC60265-1. According to their values and circuits, the ratio of applied voltage and transient recovery voltage are much different. This paper is convinced of TRV waves and proposes the optical circuit required at the standard via the simulation of all circuit conditions.

  • PDF

유도방식 무선충전기용 송수신 장치간 정렬상태 검출기법 (The method of alignment detection between Tx and Rx set in wireless inductive charger)

  • 이상곤;김재명
    • 한국위성정보통신학회논문지
    • /
    • 제9권1호
    • /
    • pp.90-96
    • /
    • 2014
  • 본 논문은 무선충전기에 있어서 효율 증대 기법에 관한 것으로, 송수신 장치간 정렬상태를 수신 장치인 스마트폰에 표시할 수 있는 방법을 제시한다. 구현된 무선충전기는 세계 표준인 WPC( Wireless Power Consortium ) 방식을 기반으로 되어 있어 수 100kHz 이하의 주파수로 동작하고 누설 자속을 최소화할 수 있도록 자기장 차폐제를 사용한 송수신 코일 구조를 갖는다. 송수신 장치의 정렬 상태를 확인할 수 있는 종래 방식은 수신단 코일의 수신 레벨만을 표시하는 단순 방식이지만 본 방식은 수신 장치의 위치까지 알 수 있어 보다 진보된 방식이라 할 수 있다. 무선 충전기 송수신 장치의 정렬상태 검출을 위하여 수신 코일의 위치변화와 자기장 세기가 서로 선형관계에 있음을 확인하고 삼각측량법을 이용하여 이 선형관계가 위치 정보로 변환될 수 있음을 보였다. 실험을 통하여 선형관계에 영향을 미칠 수 있는 요소들을 분석하고 이 요소들을 최적화한 상태에서의 선형 특성을 가질 수 있음을 보였다.

장소별 완속충전기 적정 보급 비율에 관한 연구 : 전기차 이용자의 통행 및 충전행태에 따른 이질성을 중심으로 (Exploring a Balanced Share of Slow Charging Options by Places Based on Heterogeneous Travel and Charging Behavior of Electric Vehicle Users)

  • 이재현;윤서연;김현미
    • 한국ITS학회 논문지
    • /
    • 제21권6호
    • /
    • pp.21-35
    • /
    • 2022
  • 최근 정부의 적극적인 지원정책과 함께 전기차 이용자들이 급증하고 있으며, 이로 인해 이용자 중심의 충전인프라 구축에도 많은 관심을 쏟아지고 있다. 다양한 정책의 수립과 함께 건물 특성에 기반한 총량적인 전기차 충전기 보급대수 기준은 마련되고 있으나, 장소별 특성에 기반한 완속과 급속충전기 적정 보급 비율에 대한 연구는 제한적이다. 이에 본 연구에서는 전기차 이용자들을 대상으로 진행한 설문조사를 통해 수집한 장소 유형별 공용 완속충전기 보급 비율 자료를 바탕으로 적정 보급비율을 도출하고, 개인별로 충전 환경 요구가 어떻게 차별적으로 유형화되고 이들이 어떠한 특성과 연관되는지 분석하였다. 분석 결과, 10% 이하의 완속 충전기가 필요한 유형, 40-60% 수준의 완속충전기가 필요하여 완속과 급속충전기의 균등 분배가 필요한 유형, 완속이 80% 이상 필요한 유형 등 총 세 가지 장소 유형을 도출할 수 있었다. 또한 잠재계층 군집분석을 통해 개인별로 서로 다른 장소유형별 완속충전기 필요 수준을 분류한 결과 5개 군집으로 유형화할 수 있었으며, 이들은 사회경제적 변수, 차량의 특성, 통행 및 충전행태와 연관된 것으로 나타났다. 특히, 충전행태와 주말 통행행태 그리고 성별, 소득과의 연관성이 높은 것으로 나타났다. 본 연구의 분석결과는 향후 충전인프라 정책 수립 및 전기차 시장의 변화에 따른 충전인프라 보급 기준 마련에 활용될 수 있을 것으로 사료된다.

FVF-Based Low-Dropout Voltage Regulator with Fast Charging/Discharging Paths for Fast Line and Load Regulation

  • Hinojo, Jose Maria;Lujan-Martinez, Clara;Torralba, Antonio;Ramirez-Angulo, Jaime
    • ETRI Journal
    • /
    • 제39권3호
    • /
    • pp.373-382
    • /
    • 2017
  • A new internally compensated low drop-out voltage regulator based on the cascoded flipped voltage follower is presented in this paper. Adaptive biasing current and fast charging/discharging paths have been added to rapidly charge and discharge the parasitic capacitance of the pass transistor gate, thus improving the transient response. The proposed regulator was designed with standard 65-nm CMOS technology. Measurements show load and line regulations of $433.80{\mu}V/mA$ and 5.61 mV/V, respectively. Furthermore, the output voltage spikes are kept under 76 mV for 0.1 mA to 100 mA load variations and 0.9 V to 1.2 V line variations with rise and fall times of $1{\mu}s$. The total current consumption is $17.88{\mu}V/mA$ (for a 0.9 V supply voltage).