• 제목/요약/키워드: Charge-discharge process

검색결과 202건 처리시간 0.022초

정극재료로서 $Li_2O-P_2O_5-V_2O_5$ 유리의 결정화와 충방전 특성 (Crystallization and charg-discharge properties of $Li_2O-P_2O_5-V_2O_5$-gless as Cathode material)

  • 손명모;이헌수;송희웅;구할본
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 춘계학술대회 논문집 전자세라믹스 센서 및 박막재료 반도체재료 일렉트렛트 및 응용기술
    • /
    • pp.157-159
    • /
    • 2000
  • Vanadate glass in the $Li_2O-P_2O_5-V_2O_5$ system with 60mol% $V_2O_5$ was prepared by melting the bath in pt. crucible followed by quenching on the copper plate. We found that $Li_2O-P_2O_5-V_2O_5$ glass ceramics obtained from nucleation of $Li_2O-P_2O_5-V_2O_5$ glass showed significantly higher capacity and longer cycle life than conventionally made crystalline $LiV_3O_8$. In the present paper, We describe the charge/discharge properties during crystallization process and find the best crystallization condition of $Li_2O-P_2O_5-V_2O_5$ glass as cathode material. The Charge and discharge capacity of $Li_2O-P_2O_5-V_2O_5$ glass was about 220mAh/g for the cell heat-treated at $250^{\circ}C$ for 2.5hr.

  • PDF

Cavity and Interface effect of PI-Film on Charge Accumulation and PD Activity under Bipolar Pulse Voltage

  • Akram, Shakeel;Wu, Guangning;Gao, GuoQiang;Liu, Yang
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권5호
    • /
    • pp.2089-2098
    • /
    • 2015
  • With the continuous development in insulation of electrical equipment design, the reliability of the system has been enhanced. However, in the manufacturing process and during operation under continues stresses introduce local defects, such as voids between interfaces that can responsible to occurrence of partial discharge (PD), electric field distortion and accumulation of charges. These defects may lead to localize corrosion and material degradation of insulation system, and a serious threat to the equipment. A model of three layers of PI film with air gap is presented to understand the influence of interface and voids on exploitation conditions such as strong electrical field, PD activity and charge movement. The analytical analysis, and experimental results are good agreement and show that the lose contact between interfaces accumulate more residual charges and in consequences increase the electric field intensity and accelerates internal discharges. These residual charges are trapped charges, injected by the electrodes has often same polarity, so the electric field in cavities increases significantly and thus partial discharge inception voltage (PDIV) decreases. Contrary, number of PD discharge quantity increases due to interface. Interfacial polarization effect has opposite impact on electric field and PDIV as compare to void.

FE Analysis of Plasma Discharge and Sheath Characterization in Dry Etching Reactor

  • Yu, Gwang Jun;Kim, Young Sun;Lee, Dong Yoon;Park, Jae Jun;Lee, Se Hee;Park, Il Han
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권1호
    • /
    • pp.307-312
    • /
    • 2014
  • We present a full finite element analysis for plasma discharge in etching process of semiconductor circuit. The charge transport equations of hydrodynamic diffusion-drift model and the electric field equation were numerically solved in a fully coupled system by using a standard finite element procedure for transient analysis. The proposed method was applied to a real plasma reactor in order to characterize the plasma sheath that is closely related to the yield of the etching process. Throughout the plasma discharge analysis, the base electrode of reactor was tested and modified for improving the uniformity around the wafer edge. The experiment and numerical results were examined along with SEM data of etching quality. The feasibility and usefulness of the proposed method was shown by both numerical and experimental results.

Solid state electrochemical double layer capacitors with natural graphite and activated charcoal composite electrodes

  • Hansika, P.A.D.;Perera, K.S.;Vidanapathirana, K.P.;Zainudeen, U.L.
    • Advances in materials Research
    • /
    • 제8권1호
    • /
    • pp.37-46
    • /
    • 2019
  • Electrochemical double layer capacitors (EDLCs) which are fabricated using carbon based electrodes have been emerging at an alarming rate to fulfill the energy demand in the present day world. Activated charcoal has been accepted as a very suitable candidate for electrodes but its cost is higher than natural graphite. Present study is about fabrication of EDLCs using composite electrodes with activated charcoal and Sri Lankan natural graphite as well as a gel polymer electrolyte which is identified as a suitable substitute for liquid electrolytes. Electrochemical Impedance Spectroscopy, Cyclic Voltammetry and Galvanostatic Charge Discharge test were done to evaluate the performance of the fabricated EDLCs. Amount of activated charcoal and natural graphite plays a noticeable role on the capacity. 50 graphite : 40 AC : 10 PVdF showed the optimum single electrode specific capacity value of 15 F/g. Capacity is determined by the cycling rate as well as the potential window within which cycling is being done. Continuous cycling resulted an average single electrode specific capacity variation of 48 F/g - 16 F/g. Capacity fading was higher at the beginning. Later, it dropped noticeably. Initial discharge capacity drop under Galvanostatic Charge Discharge test was slightly fast but reached near stable upon continuous charge discharge process. It can be concluded that initially some agitation is required to reach the maturity. However, the results can be considered as encouraging to initiate studies on EDLCs using Sri Lankan natural graphite.

이차전지 충방전용 직류-직류 변환기에 관한 연구 (A Study on the DC-DC Converter to Charge and Discharge Secondary Batteries)

  • 채수용;서영민;정대택;윤덕용;홍순찬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.235-237
    • /
    • 2006
  • This paper proposes a DC-DC converter which is able to charge and discharge secondary batteries. The converter operates as a double-ended forward converter in charging process and as electrical isolated boost converter in discharging process. The converter is designed for continuous current operation. The switching frequency is selected as 100kHz to reduce the size of both the inductor and the capacitor.

  • PDF

In-Depth Analysis of Coulombic Efficiency of Zinc-Air Secondary Batteries

  • Jeong, Jiung;Shin, Heon-Cheol
    • Journal of Electrochemical Science and Technology
    • /
    • 제11권1호
    • /
    • pp.26-32
    • /
    • 2020
  • In this study, the side reactions that greatly affect the coulombic efficiency of a zinc-air secondary battery are quantitatively analyzed on the basis of the charging-discharging characteristics, open circuit self-discharge characteristics, and a series of calculations. In particular, the charge amounts consumed by water electrolysis and self-discharge during charging process are separately determined so that the charging efficiency (the amount of charge used in actual charging with respect to the applied charge amount) can be estimated, which would enable systematic understanding of the cause of coulombic efficiency degradation. Using two cells with different charging overvoltages, the validity of the proposed method can be assessed.

Fabrication of Graphene Supercapacitors for Flexible Energy Storage

  • Habashi, M. Namdar;Asl, Shahab Khameneh
    • 한국재료학회지
    • /
    • 제27권5호
    • /
    • pp.248-254
    • /
    • 2017
  • In the present work, graphene powder was synthesized by laser scribing method. The resultant flexible light-scribed graphene is very appropriate for use in micro-supercapacitors. The effect of the laser scribing process in reducing graphene oxide (GO) was investigated. GO was synthesized using a chemical mixture of GO solution; then, it was coated onto a LightScribe DVD disk and laser scribed to reduce GO and create laser-scribed graphene (LSG). The CV curves of pristine rGO at various scan rates showed that the ultimate product possesses the ability to store energy at the supercapacitor level. Charge-discharge curves of pristine rGO at two different current densities indicated that the specific capacitance ($C_m$) increases due to the reduction of the discharge current density. Finally, the long-term charge-discharge stability of the LSG was plotted and indicates that the specific capacitance decreases very slightly from its primary capacitance of ${\sim}10F\;cm^{-3}$ and that the cyclic stability is favorable over 1000 cycles.

Supercapcitor용 $V_{2}O_{5}$-Flyash Composite 전극의 충방전 특성 (Charge/Discharge Properties of $V_{2}O_{5}$-Flyash Composite electrode for Supercapacitor)

  • 김명산;김종욱;구할본;박복기
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 추계학술대회 논문집
    • /
    • pp.335-338
    • /
    • 2000
  • Carbon is an attractive candidate for use in eletrochemical supercapacitors that depend on charge storage in the electrode/electrolyte international double layer. Property of an electrical double layer capacitor depend both on the technique used to prepare the electrode and on the current collector structure. The study is to research that V$_2$O$_{5}$-flyash-AC composite electrode for supercapacitor. The discharge capacitance of V$_2$O$_{5}$-flyash-AC(70wt%) in 1st and 50th cycle was 18.6F/g and 15.13F/g at current density of 0.5mA/cm$^2$. The discharge process of V$_2$O$_{5}$-flyash (3 : 97)-AC composite electrode is larger than that others.thers.

  • PDF

방전현상 해석을 위한 전자장 및 전하이동 방정식의 비선형 결합 알고리즘 (Electric Discharge Analysis Using Nonlinarly-Coupled Equation of Electromagnetic Field and Charge Transport)

  • 이세연;박일한;이세희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 C
    • /
    • pp.1494-1495
    • /
    • 2006
  • A complete finite element analysis method for discharge onset process, which is governed and coupled by charge transport equation and electric field equation, was presented. The charge transport equation of first order was transformed into a second-order one by utilizing the artificial diffusion scheme. The two second-order equations were analyzed by the finite element formulation which is well-developed for second-order ones. The Fowler-Nordheim injection boundary condition was adopted for charge transport equation. After verifying the numerical results by comparing to the analytic solutions using parallel plane electrodes with one carrier system, we extended the result to blade-plane electrodes in 2D xy geometry with three carriers system. Radius of the sharp tip was taken to be 50 ${\mu}m$. When this sharp geometry was solved by utilizing the space discretizing methods, the very sharp tip was found to cause a singularity in electric field and space charge distribution around the tip. To avoid these numerical difficulties in the FEM, finer meshes, a higher order shape function, and artificial diffusion scheme were employed.

  • PDF

Charge/Discharge Mechanism of Multicomponent Olivine Cathode for Lithium Rechargeable Batteries

  • Park, Young-Uk;Shakoor, R.A.;Park, Kyu-Young;Kang, Ki-Suk
    • Journal of Electrochemical Science and Technology
    • /
    • 제2권1호
    • /
    • pp.14-19
    • /
    • 2011
  • Quasi-equilibrium profiles are analyzed through galvanostatic intermittent titration technique (GITT) and potentiostatic intermittent titration technique (PITT) to study the charge/discharge mechanism in multicomponent olivine structure ($LiMn_{1/3}Fe_{1/3}Co_{1/3}PO_4$). From GITT data, the degree of polarization is evaluated for the three regions corresponding to the redox couples of $Mn^{2+}/Mn^{3+}$, $Fe^{2+}/Fe^{3+}$ and $Co^{2+}/Co^{3+}$. From PITT data, the current vs. time responses are examined in each titration step to find out the mode of lithium de-intercalation/intercalation process. Furthermore, lithium diffusivities at specific compositions (x in $Li_xMn_{1/3}Fe_{1/3}Co_{1/3}PO_4$) are also calculated. Finally, total capacity ($Q^{total}$) and diffusional capacity ($Q^{diff}$) are obtained for some selected voltage steps. The entire study consistently confirms that the charge/discharge mechanism of multicomponent olivine cathode is associated with a one-phase reaction rather than a biphasic reaction.