• 제목/요약/키워드: Charge-Transfer

검색결과 1,032건 처리시간 0.029초

해양 환경 하에서 431 스테인리스강의 하이브리드 실험을 통한 캐비테이션 손상 거동 (Cavitation Damage Behavior for 431 Stainless Steel by Hybrid Test in Sea Water)

  • 정상옥;김성종
    • 한국표면공학회지
    • /
    • 제46권6호
    • /
    • pp.271-276
    • /
    • 2013
  • The demand for stainless steel is continuously increasing with the development in offshore industry due to its excellent corrosion resistance characteristics. However, it suffers cavitation-erosion in application of high rotating fluid and the damage accelerates in combination with electrochemical corrosion because of Cl-ion in sea water. This paper investigated the complex damage behavior for 431 stainless steel, that is one of martensite stainless steels, through the hybrid test in sea water. Various experiments were carried out, including potential measurement, anodic/cathodic polarization experiment and Tafel analysis. Surface morphology was observed and damage depth was analyzed by SEM and 3D microscope after each experiment, respectively. The results revealed that more active potential was observed under cavitation condition than static condition due to breakdown of passive film and activation of charge transfer, and that higher corrosion current density was obtained under cavitation condition due to synergistic effect of corrosion and erosion.

CBD(Chemical Bath Deposition) 법으로 제조된 전기화학식 캐패시터용 NiO 나노박편 필름 (Nickel Oxide Nano-Flake Films Synthesized by Chemical Bath Deposition for Electrochemical Capacitors)

  • 김영하;박수진
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.163.2-163.2
    • /
    • 2010
  • In this work, nano-flake shaped nickel oxide (NiO) films were synthesized by chemical bath deposition technique for electrochemical capacitors. The deposition was carried out for 1 and 2 h at room temperature using nickel foam as the substrate and the current collector. The structure and morphology of prepared NiO film were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). And, electrochemical properties were characterized by cyclic voltammetry, galvanostatic charge-discharge, and AC impedence measurement. It was found that the NiO film was constructed by many interconnected NiO nano-flakes which arranged vertically to the substrate, forming a net-like structure with large pores. The open macropores may facilitate the electrolyte penetration and ion migration, resulted in the utilization of nickel oxide due to the increased surface area for electrochemical reactions. Furthermore, it was found that the deposition onto nickel foam as substrate and curent collector led to decrease of the ion transfer resistance so that its specific capacitance of a NiO film had high value than NiO nano flake powder.

  • PDF

Comparison of Catalytic Activity for Methanol Electrooxidation Between Pt/PPy/CNT and Pt/C

  • Lee, C.G.;Baek, J.S.;Seo, D.J.;Park, J.H.;Chun, K.Y.
    • 전기화학회지
    • /
    • 제13권4호
    • /
    • pp.240-245
    • /
    • 2010
  • This work explored the catalytic effect of Pt in multi-wall carbon nanotube and poly-pyrrole conductive polymer electrocatalysts (Pt/PPy/MWCNT). A home-made Pt/PPy/MWCNT catalyst was first evaluated by comparing its electrochemical active surface area (ESA) with E-Tek commercial catalysts by cyclic voltammetry in $H_2SO_4$ solution. Then, the methanol oxidation currents of Pt/PPy/MWCNT and the hydrogen peaks in $H_2SO_4$ solution were serially measured with microporous electrode. This provided the current density of methanol oxidation based on the ESA, allowing a quantitative comparison of catalytic activity. The current densities were also measured for Pt/C catalysts of E-Tek and Tanaka Precious Metal Co. The current densities for the different catalysts were similar, implying that catalytic activity depended directly on the ESA rather than charge transfer or electronic conductivity.

Synthesis and Luminescent Properties of $RE^3+(Eu^3+\;and\;Tb^3+$) Ions Activated CaGd4O7 Novel Phosphors

  • Pavitra, E.;Raju, G.Seeta Rama;Ko, Yeong-Hwan;Yu, Jae-Su
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.359-359
    • /
    • 2012
  • Trivalent rare-earth ($RE^{3+}=Eu^{3+}\;and\;Tb^{3+}$) ions activated $CaGd_4O_7$ phosphors were synthesized by a sol-gel process. After annealing at $1,500^{\circ}C$, the XRD patterns of the phosphor confirmed their monoclinic structure. The photoluminescence excitation spectra of $Eu^{3+}$ and $Tb^{3+}$ doped $CaGd_4O_7$ phosphor shows the broad-band excitations in the shorter wavelength region due to charge transfer band of completely filled $O^{2-}$ to the partially filled $Eu^{3+}$ ions and f-d transitions of $Tb^{3+}$ ions, respectively. The photoluminescence spectra show that the reddish-orange ions and green emission for $Eu^{3+}$ and $Tb^{3+}$ ions, respectively. Owing to the importance of thermal quenching property in the technological parameters, the temperature-dependent luminescence properties of these phosphors were measured for examing the suitability of their applications in the development of light emitting diodes (LEDs). In addition to those measurements, the cathodoluminescence properties were examined by changing the acceleration voltage and filament current. The calculated chromaticity coordinates of these phosphors were close proximity to those of commercially available phosphors for LED and field emission display devices.

  • PDF

Impedance and Thermodynamic Analysis of Bioanode, Abiotic Anode, and Riboflavin-Amended Anode in Microbial Fuel Cells

  • Jung, Sok-Hee;Ahn, Young-Ho;Oh, Sang-Eun;Lee, Jun-Ho;Cho, Kyu-Taek;Kim, Young-Jin;Kim, Myeong-Woon;Shim, Joon-Mok;Kang, Moon-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권10호
    • /
    • pp.3349-3354
    • /
    • 2012
  • Understanding exoelectrogenic reactions of the bioanode is limited due to its complexity and the absence of analytics. Impedance and thermodynamics of bioanode, abiotic anode, and riboflavin-amended anode were evaluated. Activation overpotential of the bioanode was negligible compared with that of the abiotic anode. Impedance spectroscopy shows that the bioanode had much lower charge transfer resistance and higher capacitance than the abiotic anode in low frequency reaction. In high frequency reaction, the impedance parameters, however, were relatively similar between the bioanode and the abiotic anode. At open-circuit impedance spectroscopy, a high frequency arc was not detected in the abiotic anode in Nyquist plot. Addition of riboflavin induced a phase angle shift and created curvature in high-frequency arc of the abiotic anode, and it also drastically changed impedance spectra of the bioanode.

Preparation of Dihydroxy Naphthalene/TiO2 Complex via Surface Modification and Their Photocatalytic H2 Production Performances Under Visible Light

  • Hu, Shaozheng;Li, Fayun;Fan, Zhiping
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권7호
    • /
    • pp.2056-2062
    • /
    • 2013
  • The dihydroxy naphthalene/$TiO_2$ complexes with different substitution patterns were prepared by surface modification. X-ray diffraction, UV-Vis spectroscopy, photoluminescence, and X-ray photoelectron spectroscopy were used to characterize the prepared composite materials. The results indicated that the surface modification did not influence the crystallization of $TiO_2$. The visible-light absorbances of prepared dihydroxy naphthalene/$TiO_2$ complexes could be assigned to the ligand-to-metal charge transfer. The obtained catalyst exhibited outstanding photocatalytic activity and stability under visible light. A linear relationship existed between the percentages of hydroxynaphthalenes coordinated on $TiO_2$ surface and $H_2$ production ability. The substitution pattern of dihydroxy naphthalene and $CH_3OH$ content could also influence the photocatalytic performance remarkably. The photocatalytic $H_2$ production ability was further improved after loading with ultra low concentration of Pt, 0.02 wt %. The possible mechanism was proposed.

몰리브덴(V)의 퀴놀린계 착물합성과 그 성질 (제1보) 치환-8-퀴놀린올의 옥소몰리브덴 (V) 착물 (Synthesis and Characterization of Substituted Quinoline Complexes of Molybdenum(I) Oxo Molybdenum(V) Complexes of Substituted 8-Quinolinols)

  • 이광;오상오
    • 대한화학회지
    • /
    • 제29권4호
    • /
    • pp.372-381
    • /
    • 1985
  • 치환 8-퀴놀린올의 옥소몰리브덴(V)착물을 합성하고 착물의 원소분석, 자외선스펙트럼, 전자스펙트럼 및 전도도를 측정하였고 옥소몰리브덴(VI)착물과 함께 질량분석을 행하여 비교 검토하였다. 옥소몰리브덴(V) 착물은 비전해질이고 몰리브덴-산소의 신축진동은 $940cm^{-1}$ 부근에서 강한 흡수띠가 나타나고 결정장전이와 전하이동 전이가 일어났다. 질량분석 결과로 Mo(V, VI)착물에서 몰리브덴과 리간드의 조성이 1:2임을 확인할 수 있었고 옥소몰리브덴(VI)착물에서는 1:1조성의 착물의 질량수가 나타나지만 옥소몰리브덴(V)에서는 일부만 확인되었다.

  • PDF

Cu(Ⅱ) Y Zeolite에 흡착된 푸란화합물에 대한 EPR 연구 (EPR Study of Furan Compounds Adsorbed on Cu(Ⅱ) Y Zeolite)

  • 서곤;전학제
    • 대한화학회지
    • /
    • 제24권6호
    • /
    • pp.421-425
    • /
    • 1980
  • Cu(Ⅱ) 이온이 교환된 zeolite Y에 푸란이 흡착되는 형태를 알아보기 위해, 푸란과 2-메틸푸란이 흡착될 때 나타나는 EPR 스펙트럼을 조사하였다. 푸란이 흡착되면, Cu(Ⅱ) 이온의 흡수 피이크는 감소되면서 g-factor가 2.002, 피이크폭이 8 gauss인 단일 흡수피이크가 나타난다. 메틸기가 치환된 2-메틸푸란이 Cu(15)Y에 흡착되면, 푸란고리 및 메틸기의 수소에 의한 초미세구조가 나타나며, 구리의 이온 교환도가 커지면, 초미세구조는 약해진다. 푸란이 Cu(Ⅱ) 이온이 교환된 zeolite Y에 흡착되어 나타나는 새로운 흡수피이크는 Cu(Ⅱ) 이온과 푸란고리사이에 형성된 전하이동착물에 의한 것으로 생각되었다.

  • PDF

The Effect of External DC Electric Field on the Atmospheric Corrosion Behaviour of Zinc under a Thin Electrolyte Layer

  • Liang, Qinqin;YanYang, YanYang;Zhang, Junxi;Yuan, Xujie;Chen, Qimeng
    • Corrosion Science and Technology
    • /
    • 제17권2호
    • /
    • pp.54-59
    • /
    • 2018
  • The effect of external DC electric field on atmospheric corrosion behavior of zinc under a thin electrolyte layer (TEL) was investigated by measuring open circuit potential (OCP), cathodic polarization curve, and electrochemical impedance spectroscopy (EIS). Results of OCP vs. time curves indicated that the application of external DC electric field resulted in a negative shift of OCP of zinc. Results of cathodic polarization curves measurement and EIS measurement showed that the reduction current of oxygen increased while charge transfer resistance ($R_{ct}$) decreased under the external DC electric field. Variation of OCP negative shift, reduction current of oxygen, and $R_{ct}$ increase with increasing of external DC electric field strength as well as the effect of external DC electric field on double-layer structure in the electrode/electrolyte interface and ions distribution in thin electrolyte layer were analyzed. All results showed that the external DC electric field could accelerate the corrosion of zinc under a thin electrolyte layer.

전하선택형 태양전지의 연구개발 동향 (Research and Development Trend of Carrier Selective Energy Contact Solar Cells)

  • 조은철;조영현;이준신
    • Current Photovoltaic Research
    • /
    • 제6권2호
    • /
    • pp.43-48
    • /
    • 2018
  • The traditional silicon heterojunction solar cells consist of intrinsic amorphous silicon to prevent recombination of the silicon surface and doped amorphous silicon to transport the photo-generated electrons and holes to the electrode. Back contact solar cells with silicon heterojunction exhibit very high open-circuit voltages, but the complexity of the process due to form the emitter and base at the backside must be addressed. In order to solve this problem, the structure, manufacturing method, and new materials enabling the carrier selective contact (CSC) solar cell capable of achieving high efficiency without using a complicated structure have recently been actively developed. CSC solar cells minimize carrier recombination on metal contacts and effectively transfer charge. The CSC structure allows very low levels of recombination current (eg, Jo < 9fA/cm2), thereby achieves high open-circuit voltage and high efficiency. This paper summarizes the core technology of CSC solar cell, which has been spotlighted as the next generation technology, and is aiming to speed up the research and development in this field.