• Title/Summary/Keyword: Charge-Transfer

Search Result 1,027, Processing Time 0.029 seconds

Understanding Interfacial Charge Transfer Nonlinearly Boosted by Localized States Coupling in Organic Transistors (Carbon Nano Tube 및 산화그래핀을 첨가한 폴리우레아 복합재 제조 및 그 화학적 특성 분석)

  • Kim, Hyeongtae;Lee, Jihyun;An, Woo-Jin;Park, Jun Hong
    • Journal of Adhesion and Interface
    • /
    • v.22 no.4
    • /
    • pp.136-143
    • /
    • 2021
  • Polyurea has been investigated as a polymer matrix for composite materials because of its high mechanical strength. Although polyurea has a similar chemical structure to polyurethane, it has much higher strength and durability. In this study, the fabrication of polyurea composites reinforced with carbon nanotube (CNT) and graphene oxide (GO) is demonstrated to enhance the tensile strength of the glass fibers composite. Using FTIR and Raman spectroscopies, the chemical structures of polyurea, CNT, and GO are investigated. As a result, spectroscopy analysis reveals that the chemical structure of CNT, GO, and polyurea is maintained during the fabrication of the composite structure. Scanning electron microscopy reveals the uniform distribution of CNT and GO across the polyurea matrix. The reinforcement of 1 wt% CNT in polyurea enhances the tensile strength of CNT/polyurea composites. In contrast, the reinforcement of GO in polyurea induces the degradation of the tensile strength of GO/polyurea composites.

Improved Degree of Freedom of Magnetic Induction Wireless Charging Coil Using Proposed Double Coil (이중코일을 이용한 자기유도 무선충전 코일의 자유도 개선)

  • Choi, Bo-Hee;Nam, Yong-Hyun;Chung, Habong;Lee, Jeong-Hae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.12
    • /
    • pp.907-914
    • /
    • 2018
  • Wireless charging has been actively researched and popularized owing to the potential convenience of being able to charge electronic devices without wires for users. However, the receiver on the wireless charging pad is not charged when the center of the receiver is misaligned; thus, the center of the receiver must be adjusted well. This misalignment may greatly reduce the convenience of wireless charging. To overcome this limitation of wireless charging, a coil is designed to improve the positional freedom of the receiver. The positional freedom of the Rx coil is improved when the outer diameter of Tx coil is larger than when Rx and Tx coils are almost the same size. When the Tx coil has a larger outer diameter than that of the Rx coil, the efficiency at the center is somewhat lowered, but the efficiency is improved compared to when the center is out of order. In this paper, a double coil structure having an outer and an inner coil is proposed. The double coil structure further improves the efficiency, compared with one coil with the same outer size. The simulation and measurement results demonstrated that the tendency was consistent, and it was verified that the degree of freedom of the Rx coil is improved by adding the inner coil, while the size of the outer coil was the same. The measurement shows that the transmission efficiency of the conventional Tx coil is 37 %, the larger outer diameter coil is 45 %, and double coil is 47 % when the distance of the Tx/Rx coil is 3 mm, the misalignment is 15 mm and current flowing in the Rx coil is 1 A at an operating frequency of 105 to 210 kHz.

Nanolayered CuWO4 Decoration on Fluorine-Doped SnO2 Inverse Opals for Solar Water Oxidation

  • Cho, Ha Eun;Yun, Gun;Arunachalam, Maheswari;Ahn, Kwang-Soon;Kim, Chung Soo;Lim, Dong-Ha;Kang, Soon Hyung
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.282-291
    • /
    • 2018
  • The pristine fluorine-doped $SnO_2$ (abbreviated as FTO) inverse opal (IO) was developed using a 410 nm polystyrene bead template. The nanolayered copper tungsten oxide ($CuWO_4$) was decorated on the FTO IO film using a facile electrochemical deposition, subsequently followed by annealing at $500^{\circ}C$ for 90 min. The morphologies, crystalline structure, optical properties and photoelectrochemical characteristics of the FTO and $CuWO_4$-decorated FTO (briefly denoted as $FTO/CuWO_4$) IO film were investigated by field emission scanning electron microscopy, X-ray diffraction, UV-vis spectroscopy and electrochemical impedance spectroscopy, showing FTO IO in the hexagonally closed-pack arrangement with a pore diameter and wall thickness of about 300 nm and 20 nm, respectively. Above this film, the $CuWO_4$ was electrodeposited by controlling the cycling number in cyclic voltammetry, suggesting that the $CuWO_4$ formed during 4 cycles (abbreviated as $CuWO_4$(4 cycles)) on FTO IO film exhibited partial distribution of $CuWO_4$ nanoparticles. Additional distribution of $CuWO_4$ nanoparticles was observed in the case of $FTO/CuWO_4$(8 cycles) IO film. The $CuWO_4$ layer exhibits triclinic structure with an indirect band gap of approximately 2.5 eV and shows the enhanced visible light absorption. The photoelectrochemical (PEC) behavior was evaluated in the 0.5 M $Na_2SO_4$ solution under solar illumination, suggesting that the $FTO/CuWO_4$(4 cycles) IO films exhibit a photocurrent density ($J_{sc}$) of $0.42mA/cm^2$ at 1.23 V vs. reversible hydrogen electrode (RHE, denoted as $V_{RHE}$), while the FTO IO and $FTO/CuWO_4$(8 cycles) IO films exhibited a $J_{sc}$ of 0.14 and $0.24mA/cm^2$ at $1.23V_{RHE}$, respectively. This difference can be explained by the increased visible light absorption by the $CuWO_4$ layer and the favorable charge separation/transfer event in the cascading band alignment between FTO and $CuWO_4$ layer, enhancing the overall PEC performance.

The Effects of Different Membranes on the Performance of Aqueous Organic Redox Flow Battery Using Anthraquinone and TEMPO Redox Couple (안트라퀴논과 템포 활물질 기반 수계 유기 레독스 흐름 전지에서의 멤브레인 효과)

  • Lee, Wonmi;Kwon, Yongchai
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.695-700
    • /
    • 2019
  • n this study, the evaluation of performance of AORFB using anthraquinone derivative and TEMPO derivative as active materials in neutral supporting electrolyte with various membrane types was performed. Both anthraquinone derivative and TEMPO derivative showed high electron transfer rate (the difference between anodic and cathodic peak potential was 0.068 V) and the cell voltage is 1.17 V. The single cell test of the AORFB using 0.1 M active materials in 1 M KCl solution with using Nafion 212 membrane, which is commercial cation exchange membrane was performed, and the charge efficiency (CE) was 97% and voltage efficiency (VE) was 59%. In addition, the discharge capacity was $0.93Ah{\cdot}L^{-1}$ which is 35% of theoretical capacity ($2.68Ah{\cdot}L^{-1}$) at $4^{th}$ cycle and the capacity loss rate was $0.018Ah{\cdot}L^{-1}/cycle$ during 10 cycles. The single cell tests were performed with using Nafion 117 membrane and SELEMION CSO membrane. However, the results were more not good because of increased resistance because of thicker thickness of membrane and increased cross-over of active materials, respectively.

Improvement of Operating Stabilities in Organic Field-Effect Transistors by Surface Modification on Polymeric Parylene Dielectrics (Parylene 고분자 유전체 표면제어를 통한 OFET의 소자 안정성 향상 연구)

  • Seo, Jungyoon;Oh, Seungteak;Choi, Giheon;Lee, Hwasung
    • Journal of Adhesion and Interface
    • /
    • v.22 no.3
    • /
    • pp.91-97
    • /
    • 2021
  • By introducing an organic interlayer on the Parylene C dielectric surface, the electrical device performances and the operating stabilities of organic field-effect transistors (OFETs) were improved. To achieve this goal, hexamethyldisilazane (HMDS) and octadecyltrichlorosilane (ODTS), as the organic interlayer materials, were used to control the surface energy of the Parylene C dielectrics. For the bare case used with the pristine Parylene C dielectrics, the field-effect mobility (μFET) and threshold voltage (Vth) of dinaphtho[2,3-b:2',3'-f ]thieno[3,2-b]- thiophene (DNTT) FET devices were measured at 0.12 cm2V-1s-1 and - 5.23 V, respectively. On the other hand, the OFET devices with HMDS- and ODTS-modified cases showed the improved μFET values of 0.32 and 0.34 cm2V-1s-1, respectively. More important point is that the μFET and Vth of the DNTT FET device with the ODTS-modified Parylene C dielectric presented the smallest changes during a repeated measurement of 1000 times, implying that it has the most stable operating stability. The results could be meaned that the organic interlayer, especially ODTS, effectively covers the Parylene C dielectric surface with alkyl chains and reduces the charge trapping at the interface region between active layer and dielectric, thereby improving the electrical operating stability.

The Power Converter Circuit Characteristics for 3 kW Wireless Power Transmission (3 kW 무선 전력전송을 위한 전력 변환기 회로 특성)

  • Hwang, Lark-Hoon;Na, Seung-kwon;Kim, Jin Sun;Kang, Jin-hee
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.6
    • /
    • pp.566-572
    • /
    • 2020
  • In a wireless power transmitter, the characteristics and effects of wireless power transmission between two induction coils are investigated, and a power converter circuit and a battery charger/discharger circuit using wireless power transmission technology are proposed. The advantage of wireless power transmitters and wireless chargers is that, instead of the existing plug-in-mounted wired charger (OBC; on-board charger), the user can wirelessly charge the battery without connecting the power source when charging power to the battery. There is. In addition, the advantage of wireless charging can bring about an energy efficiency improvement effect by using the secondary side rectifier circuit and the receiving coil, but the large-capacity long-distance wireless charging method has a limitation on the transmission distance, so many studies are currently being conducted. The purpose of the study is to study the transmitter circuit and receiver circuit of a wireless power transmission device using a primary coil, a secondary coil, and a half bridge series resonance converter, which can transmit power of a non-contact type power transmitter. As a result, a new topology was applied to improve the power transmission distance of the wireless charging system, and through an experiment according to each distance, the maximum efficiency (95.8%) was confirmed at an output of 3 kW at an 8 cm transmission distance.

A Study on the Management of Copyright Information for Increasing the Free Use of Government Publications as Public Works (공공저작물로서 정부간행물 자유이용 촉진을 위한 저작권정보 관리에 관한 연구)

  • Seo, Hyeongdeok;Joung, Kyoung Hee
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.22 no.3
    • /
    • pp.125-141
    • /
    • 2022
  • This study aims to suggest measures for handling copyright information on government publications during records and archives management to use them freely as public works according to Article 24-2 of the Copyright Act in Korea. Through email interviews with 17 records managers, persons in charge of government publication management, and government staff with experience in production from April 4 to June 13, 2022, this study determined the current situations and problems related to producing and managing copyright information on government publications. Based on the interview findings, this research suggested the following. First, Article 24-2 of the Copyright Act must be revised to apply the Korea Open Government License (KOGL) type 1 mandatorily to all public works. Second, a cooperative system for managing copyright information on government publications should be established to improve their production and management effectiveness. Third, copyright information, such as authors, copyright holders, copyright duration, information on the copyright property transfer, public works status, and reasons for nonpublic works, must be managed through records and archives management systems. Fourth and last, information on public works must be provided during the registration number application for government publication so that everyone can access the full texts of the publications on the National Archives of Korea website.

Discussion on Local Archives Based on the Ideology of Educational Autonomy : Focused on the Need to Amend Article 11 of the Public Records Act (교육자치의 이념에 토대한 지방아카이브 논의 공공기록물법 제11조의 개정 필요성을 중심으로)

  • Jeong, SangMyung
    • The Korean Journal of Archival Studies
    • /
    • no.72
    • /
    • pp.33-89
    • /
    • 2022
  • Recently, following the opening of the Gyeongsangnam-do Archives and the Seoul Archives, work to establish local archives management institutions in cities and provinces is being actively carried out. In this process, there is an institution directly or indirectly affected by the records management work following the emergence of metropolitan·provincial office of education records management institutions. Article 11 of the current Public Archives Act is centered on cities and provinces, such as giving only the mayor and provincial governor the duty to establish a local record management institution. When a management agency is established, only the obligation to transfer the records with a retention period of 30 years or more among the records under its jurisdiction is specified. This is not appropriate when considering that each metropolitan·provincial office of education and each metropolitan·provincial perform their own duties and roles at the metropolitan·provincial level in accordance with the Constitution and laws. Therefore, in this study, legally, institutionally and historically, the fact that metropolitan·provincial offices of education and metropolitan ·provincial are the core institutions that realize local educational autonomy and local autonomy, and are equivalent administrative agencies independently in charge of their own affairs in their respective jurisdictions. We compared and examined the need to revise Article 11 of the current Public Archives Act, which is overly composed of cities and provinces, and presented the expected effects of the establishment of local records management institutions by cities and provinces of education.

Effect of Ultrasonic Irradiation on Ozone Nanobubble Process for Phenol Degradation (페놀 분해를 위한 오존 나노기포 공정에서 초음파 조사의 영향)

  • Lee, Sangbin;Park, Jae-Woo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.3
    • /
    • pp.23-29
    • /
    • 2022
  • In this study, we investigated the ozone nanobubble process in which nanobubble and ultrasonic cavitation were applied simultaneously to improve the dissolution and self-decomposition of ozone. To confirm the organic decomposition efficiency of the process, a 200 mm × 200 mm × 300 mm scale reactor was designed and phenol decomposition experiments were conducted. The use of nanobubble was 2.07 times higher than the conventional ozone aeration in the 60 minutes reaction and effectively improved the dissolution efficiency of ozone. Ultrasonic irradiation increased phenol degradation by 36% with nanobubbles, and dissolved ozone concentration was lowered due to the promotion of ozone self-decomposition. The higher the ultrasonic power was, the higher the phenol degradation efficiency. The decomposition efficiency of phenol was the highest at 132 kHz. The ozone nanobubble process showed better decomposition efficiency at high pH like conventional ozone processes but achieved 100% decomposition of phenol after 60 minutes reaction even at neutral conditions. The effect by pH was less than that of the conventional ozone process because of self-decomposition promotion. To confirm the change in bubble properties by ultrasonic irradiation, a Zetasizer was used to measure the bubbles' size and zeta potential analysis. Ultrasonic irradiation reduced the average size of the bubbles by 11% and strengthened the negative charge of the bubble surface, positively affecting the gas transfer of the ozone nanobubble and the efficiency of the radical production.

Fabrication and Characterization of NiCo2O4/Ni Foam Electrode for Oxygen Evolution Reaction in Alkaline Water Splitting (알칼라인 수전해 산소 발생 반응을 위한 NiCo2O4/Ni foam 전극 제조 및 특성 평가)

  • Kwon, Minsol;Go, Jaeseong;Lee, Yesol;Lee, Sungmin;Yu, Jisu;Lee, Hyowon;Song, Sung Ho;Lee, Dongju
    • Journal of Powder Materials
    • /
    • v.29 no.5
    • /
    • pp.411-417
    • /
    • 2022
  • Environmental issues such as global warming due to fossil fuel use are now major worldwide concerns, and interest in renewable and clean energy is growing. Of the various types of renewable energy, green hydrogen energy has recently attracted attention because of its eco-friendly and high-energy density. Electrochemical water splitting is considered a pollution-free means of producing clean hydrogen and oxygen and in large quantities. The development of non-noble electrocatalysts with low cost and high performance in water splitting has also attracted considerable attention. In this study, we successfully synthesized a NiCo2O4/NF electrode for an oxygen evolution reaction in alkaline water splitting using a hydrothermal method, which was followed by post-heat treatment. The effects of heat treatment on the electrochemical performance of the electrodes were evaluated under different heat-treatment conditions. The optimized NCO/NF-300 electrode showed an overpotential of 416 mV at a high current density of 50 mA/cm2 and a low Tafel slope (49.06 mV dec-1). It also showed excellent stability (due to the large surface area) and the lowest charge transfer resistance (12.59 Ω). The results suggested that our noble-metal free electrodes have great potential for use in developing alkaline electrolysis systems.