DOI QR코드

DOI QR Code

Improvement of Operating Stabilities in Organic Field-Effect Transistors by Surface Modification on Polymeric Parylene Dielectrics

Parylene 고분자 유전체 표면제어를 통한 OFET의 소자 안정성 향상 연구

  • Seo, Jungyoon (Department of Materials Science and Chemical Engineering, Hanyang University) ;
  • Oh, Seungteak (Department of Materials Science and Chemical Engineering, Hanyang University) ;
  • Choi, Giheon (Department of Materials Science and Chemical Engineering, Hanyang University) ;
  • Lee, Hwasung (Department of Materials Science and Chemical Engineering, Hanyang University)
  • 서정윤 (한양대학교 재료화학공학과) ;
  • 오승택 (한양대학교 재료화학공학과) ;
  • 최기헌 (한양대학교 재료화학공학과) ;
  • 이화성 (한양대학교 재료화학공학과)
  • Received : 2021.05.31
  • Accepted : 2021.07.26
  • Published : 2021.09.30

Abstract

By introducing an organic interlayer on the Parylene C dielectric surface, the electrical device performances and the operating stabilities of organic field-effect transistors (OFETs) were improved. To achieve this goal, hexamethyldisilazane (HMDS) and octadecyltrichlorosilane (ODTS), as the organic interlayer materials, were used to control the surface energy of the Parylene C dielectrics. For the bare case used with the pristine Parylene C dielectrics, the field-effect mobility (μFET) and threshold voltage (Vth) of dinaphtho[2,3-b:2',3'-f ]thieno[3,2-b]- thiophene (DNTT) FET devices were measured at 0.12 cm2V-1s-1 and - 5.23 V, respectively. On the other hand, the OFET devices with HMDS- and ODTS-modified cases showed the improved μFET values of 0.32 and 0.34 cm2V-1s-1, respectively. More important point is that the μFET and Vth of the DNTT FET device with the ODTS-modified Parylene C dielectric presented the smallest changes during a repeated measurement of 1000 times, implying that it has the most stable operating stability. The results could be meaned that the organic interlayer, especially ODTS, effectively covers the Parylene C dielectric surface with alkyl chains and reduces the charge trapping at the interface region between active layer and dielectric, thereby improving the electrical operating stability.

본 연구는 Parylene C 유전체 표면에 유기 자기조립단분자막(self-assembled monolayer, SAM) 중간층을 도입함으로써 표면특성을 제어하고 최종적으로 유기전계효과 트랜지스터(organic field-effect transistors, OFETs)의 전기적 안정성을 향상시킨 결과를 제시하였다. 유기 중간층을 적용함으로써, Parylene C 게이트 유전체의 표면 에너지를 제어하였으며, OFET의 가장 중요한 성능변수인 전계효과 이동도(field-effect transistor, μFET)와 문턱 전압 (threshold voltage, Vth)의 성능향상과 구동 안정성을 증대시켰다. 단순히 Parylene C 유전체를 적용한 Bare OFET에서 μFET 값은 0.12 cm2V-1s-1가 측정되었으나, hexamethyldisilazane (HMDS)과 octadecyltrichlorosilane (ODTS)를 중간층으로 적용된 소자에서는 각각 0.32과 0.34 cm2V-1s-1로 μFET가 증가하였다. 또한 1000번의 transfer 특성의 반복측정을 통해 ODTS 처리한 OFET의 μFET와 Vth의 변화가 가장 작게 나타남을 확인하였다. 이 연구를 통해 유기 SAM 중간층, 특히 ODTS는 효과적으로 Parylene C 표면을 알킬 사슬로 덮어 극성도를 낮춤과 함께 전하 트래핑을 감소시켜 소자의 전기적 구동 안정성을 증가시킬 수 있음을 확인하였다.

Keywords

Acknowledgement

본 연구는 이 연구는 2021년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의해 진행한 연구결과입니다(과제번호: 20010915).

References

  1. Y. H. Lee, M. J. Jang, M. Y. Lee, O. Y. Kewon, and J. H. Oh, Chem., 3, 724 (2017). https://doi.org/10.1016/j.chempr.2017.10.005
  2. Y. Yao, H. Dong, and W. Hu, Adv. Mater., 28, 4513 (2016). https://doi.org/10.1002/adma.201503007
  3. M. J. Kim, S. U. Ryu, S. A. Park, K. W. Choi, T. H. Kim, D. S. Chung, and T. H. Park, Adv. Funct. Mater., 30, 1904545 (2020). https://doi.org/10.1002/adfm.201904545
  4. D. H. Kwak, Y. N. Seo, J. E. Anthony, S. H. Kim, J. Y. Hur, H. J. Chae, H. J. Park, B. G. Kim, E. H. Lee, S. L. Ko, and W. H. Lee, Adv. Mater. Interfaces, 7, 1901696 (2020). https://doi.org/10.1002/admi.201901696
  5. K. H. Kim, J. H. Hong, S. G. Hahm, Y. C. Rho, T. K. An, S. H. Kim, and C. E. Park, ACS Appl. Mater. Interfaces, 11, 13481 (2019). https://doi.org/10.1021/acsami.8b21130
  6. H. Chen, M. Hurhangee, M. Nikolka, W. Zhang, M. Kirkus, M. Neophytou, S. Cryer, D. Harkin, P. Hayoz, M. Abdi-Jalebi, C. McNeil, H. Sirringhaus, and I. McCulloch, Adv. Mater., 29, 1702523 (2017). https://doi.org/10.1002/adma.201702523
  7. J.T.E. Quinn, J. Zhu, X. Li, J. Wang, and Y. Li, J. Mater. Chem. C, 5, 8654 (2017). https://doi.org/10.1039/C7TC01680H
  8. S. G. Lee and H. H. Choi, JAIK, 20, 162 (2019).
  9. Z. Liu, Z. Yin, S.-C. Chen, S. Dai, J. Huang, and Q. Zheng, Org. Electron., 53, 205 (2018). https://doi.org/10.1016/j.orgel.2017.11.039
  10. E. Y. Shin, H. J. Cho, S. W. Jung, C. D. Yang, and Y. Y. Noh, Adv. Funct. Mater., 28, 1704780 (2018). https://doi.org/10.1002/adfm.201704780
  11. H. Gao, Y. Qiu, J. Feng, S. Li, H. Wang, Y. Zhao, X. Wei, X. Jiang, Y. Su, Y. Wu, and L. Jiang, Nat. Commun., 10, 3912 (2019). https://doi.org/10.1038/s41467-019-11883-6
  12. J. S. Kwon, H. W. Park, D. H. Kim, and Y. J. Kwark, ACS Appl. Mater. Interfaces, 9, 5366 (2017). https://doi.org/10.1021/acsami.6b14500
  13. N. M. B. Neto, M. D. R. Silva, P. T. Araujo, and R. N. Sampaio, Adv. Mater., 30, 1705052 (2018). https://doi.org/10.1002/adma.201705052
  14. J. M. Lim and H. H. Choi, JAIK, 21, 129 (2020).
  15. G . H. Choi, K. H. Lee, S. T. Oh, J. Y. Seo, C. H. Kim, T. K. An, J. H. Lee, and H. S. Lee, J. Mater. Chem. C, 8, 10010 (2020). https://doi.org/10.1039/d0tc02339f
  16. H. J. Park, J. M. Kwon, H. J. Ahn, and S. J. Jung, J. Mater. Chem. C, 7, 6251 (2019). https://doi.org/10.1039/c8tc06267f
  17. H. Ye, H. J. Kwon, X. Tang, C. E. Park, T. K. An, and S. H. Kim, Org. Electron., 87, 105942 (2020). https://doi.org/10.1016/j.orgel.2020.105942
  18. H. J. Kwon, H. Ye, T. K. An, J. S. Hong, C. E. Park, Y. S. Choi, S. J. Shin, J. H. Lee, S. H. Kim, and X. Li, Org. Electron., 75, 105391 (2019). https://doi.org/10.1016/j.orgel.2019.105391
  19. E. Y. Shin, E. Y. Choi, and Y. Y. Noh, Org. Electron., 46, 14 (2017). https://doi.org/10.1016/j.orgel.2017.04.005
  20. T.K. Rockson, S. H. Baek, H. Y. Jang, G. H. Choi, S. Y. Oh, J. H. Kim, H. W. Cho, S. H. Kim, and H. S. Lee, ACS Appl. Mater. Interfaces, 11, 10108 (2019). https://doi.org/10.1021/acsami.9b01658
  21. X. Li, S. H. Baek, K. H. Kim, H. S. Lee, and S. H. Kim, Org. Electron., 69, 128 (2019). https://doi.org/10.1016/j.orgel.2019.03.017
  22. H. J. Park, J. M. Kwon, H. J. Ahn, and S. J. Jung, J. Mater. Chem. C, 7, 6251 (2019). https://doi.org/10.1039/c8tc06267f
  23. H. J. Park, H. J. Ahn, J. M. Kwon, S. J. Kim, and S. J. Jung, ACS Appl. Mater. Interfaces, 10, 37767 (2018). https://doi.org/10.1021/acsami.8b12663
  24. B. Han, P. Wang, H. Jin, Z. Hou, and X. Bai, Phys. Lett. A, 384, 126628 (2020). https://doi.org/10.1016/j.physleta.2020.126628
  25. S. T. Oh, G . H. Choi, H. W. Cho, J. Y. Ha, Md. R. R. Khan, and H. S. Lee, J. Phys. Chem. C, 124, 161 (2020). https://doi.org/10.1021/acs.jpcc.9b09913
  26. T. K. Rockson, S. H. Baek, H. Y. Jang, S. T. Oh, G . H. Choi, H. H. Choi, and H. S. Lee, J. Phys. Chem. C, 122, 17695 (2018). https://doi.org/10.1021/acs.jpcc.8b05959
  27. M. Nakano, I. Osaka, and K. Takimiya, Adv. Mater., 29, 1602893 (2017). https://doi.org/10.1002/adma.201602893
  28. B. B. Patil, Y. Takeda, S. Singh, T. Wang, A. Singh, T. Do, S. P. Singh, S. Tokito, A. K. Pandey, and P. Sonar, Sci. Rep., 10, 19989 (2020). https://doi.org/10.1038/s41598-020-76962-x
  29. S. Casalini, C. A. Bortolotti, F. Leonardi, and F. Biscarini, Chem. Soc. Rev., 46, 40 (2017). https://doi.org/10.1039/C6CS00509H
  30. S. Kumar, D. Panigrahi, and A. Dhar, Appl. Surf. Sci., 435, 855 (2018). https://doi.org/10.1016/j.apsusc.2017.11.186
  31. Y. B. Kim, J. H. Bae, H. W. Song, T. K. An, S. H. Kim, and C. E. Park, ACS Appl. Mater. Interfaces, 9, 39493 (2017). https://doi.org/10.1021/acsami.7b04316
  32. M. Nakano, I. Osaka, and K. Takimiya, Adv. Mater., 29, 1602893 (2016). https://doi.org/10.1002/adma.201602893
  33. P. Prisawong, P. Zalar, A. Reuveny, N. Matsuhisa, W. Lee, T. Yokota, and T. Someya, Adv. Mater., 28, 2049 (2016). https://doi.org/10.1002/adma.201504724
  34. J. S. Kim, B. S. Kang, and K. W. Cho, Adv. Funct. Mater., 29, 1806030 (2019). https://doi.org/10.1002/adfm.201806030
  35. H. Chen, W. Zhang, M. Li, G. He, and X. Guo, Chem. Rev., 120, 2879 (2020). https://doi.org/10.1021/acs.chemrev.9b00532
  36. F. Zhang, E. Mohammadi, X. Luo, J. Strzalka, J. Mei, and Y. Diao, Langmuir, 34, 1109 (2018). https://doi.org/10.1021/acs.langmuir.7b02807
  37. S. Wang, S. Zhou, Y. Tong, Z. Song, H. Wang, Q. Tang, X. Zhao, and Y. Liu, Adv. Mater. Interfaces, 6, 1801984 (2019). https://doi.org/10.1002/admi.201801984
  38. X. G u, L. Shaw, K. G u, M. F. Toney, and Z. Bao, Nat. Commun., 9, 534 (2018). https://doi.org/10.1038/s41467-018-02833-9
  39. T. Breuer, A. Karthauser, H. Klemm, F. G enuzio, G. Peschel, A. Fuhrich, T. Schmidt, and G. Witte, ACS Appl. Mater. Interfaces, 9, 8384 (2017). https://doi.org/10.1021/acsami.6b15902
  40. S. Riera-Galindo, F. Leonardi, R. Pfattner, M. Mas-Torrent, Adv. Mater. Technol., 4, 1900104 (2019). https://doi.org/10.1002/admt.201900104
  41. X. Ren, K. Pei, B. Peng, Z. Zhang, Z. Wang, X. Wang, and P. K. L. Chan, Adv. Mater., 28, 4832 (2016). https://doi.org/10.1002/adma.201600040
  42. J. Takeya, T. Nishikawa, T. Takenobu, Appl. Phys. Lett., 85, 5078 (2004). https://doi.org/10.1063/1.1826239
  43. J. Zessin, Z. Xu, N. Shin, M. Hambsch, and S. C. B. Mannsfeld, ACS Appl. Mater. Interfaces, 11, 2177 (2019). https://doi.org/10.1021/acsami.8b12346