• 제목/요약/키워드: Charge cluster model

검색결과 16건 처리시간 0.027초

A Theoretical Study of CO Molecules on Metal Surfaces: Coverage Dependent Properties

  • Sang -H. Park;Hojing Kim
    • Bulletin of the Korean Chemical Society
    • /
    • 제12권5호
    • /
    • pp.574-582
    • /
    • 1991
  • The CO molecules adsorbed on Ni(111) surface is studied in the cluster approximation employing EH method with self-consistent charge iteration. The effect of CO coverage is simulated by allowing the variation of valence state ionization potentials of each Ni atom in model cluster according to the self-consistent charge iteration method. The CO coverage dependent C-O stretching frequency shift, adsorption site conversion, and metal work function change are attributed to the charge transfer between metal surface and adsorbate. For CO/Ni(111) system, net charge transfer from Ni surface to chemisorbed CO molecules makes surface Ni atoms be more positive with increasing coverage, and lowers Ni surface valence band. This leads to a weaker interaction between metal surface valence band and Co $2{\pi}^{\ast}$ MO, less charge transfer to a single CO molecule, and the bule shift of C-O stretching frequency. Further increase of coverage induces the conversion of 3-fold site CO to lower coordination site CO as well as the blue shift of C-O stretching frequency. This whole process is accompanied by the continuous increase of metal work function.

캐올리나이트 규산염 층과 벤질알코올의 반응에 대한 양자화학계산에서 결정학적 위상이 멀리켄 전하와 자기 차폐 텐서에 미치는 영향 (The Effect of Lattice Topology on Benzyl Alcohol Adsorption on Kaolinite Surfaces: Quantum Chemical Calculations of Mulliken Charges and Magnetic Shielding Tensor)

  • 이범한;이성근
    • 한국광물학회지
    • /
    • 제20권4호
    • /
    • pp.313-325
    • /
    • 2007
  • 본 연구에서는 점토광물 표면 클러스터의 크기와 결정학적 위상이 전자 밀도와 자기 차폐 텐서에 미치는 영향을 살펴보기 위하여 캐올리나이트 규산염 층을 대표하는 세 개의 서로 다른 위상의 모델 클러스터와 벤질 알코올과의 상호작용에 대해 다양한 수준의 양자화학 계산을 수행하였다. 모델 클러스터 1은 단순화된 7개의 규산염 고리로 이루어졌고, 모델 클러스터 2는 결정학적 위상을 가진 7개의 규산염 고리로 이루어졌으며, 모델 클러스터 3은 세 개의 규산염 고리와 팔면체 고리로 이루어져 있다. 멀리켄 전하 계산 결과 벤질 알코올과의 반응 후의 상대적인 전자 밀도 이동의 크기는 모델클러스터 3의 사면체 쪽 > 모델 클러스터 1 > 모델 클러스터 2 > 모델 클러스터 3의 팔면체 쪽의 순으로 계산되었다. 또한 벤질 알코올과 강한 수소 결합을 하는 원자들의 전자 밀도 이동이 상대적으로 크다 벤질 알코올 흡착 전에 대한 사면체 표면 원자들의 자기 차폐 텐서 결과는 결정학적 위상을 고려하지 않은 경우 표면 중심으로부터의 거리가 비슷한 산소들끼리 유사한 등방 자기 차폐 텐서 값들을 갖고, 결정학적 위상을 고려한 경우는 결정학적으로 서로 다른 산소 자리(O3, O4, O5)에 대해 각각 $228.2{\pm}3.9,\;228.9{\pm}3.4,\;222.3{\pm}3.0ppm$으로 계산되었다. 흡착 전후의 산소 원자의 화학 차폐의 차이는 알코올과 근접한 산소들에서 약 $1{\sim}5.5ppm$ 정도의 변화가 나타나며 이러한 변화는 최근의 고분해능 이차원 핵자기공명분광 분석을 이용하면 실험으로 관찰할 수 있을 것으로 예상된다. 또한 모델 클러스터 2의 화학 차폐의 변화는 모델 클러스터 1보다 상대적으로 큰 특징을 보인다. 전자밀도 이동과 화학 차폐의 변화는 약한 양의 상관관계를 가진다. 이러한 결과들은 캐올리나이트 규산염 사면체 층과 벤질 알코올이 약한 수소 결합과 벤젠 고리와 규산염 층 산소 원자들의 약한 정전기적 힘에 의해 흡착되고 있음을 보여준다. 본 연구는 점토광물과 유기물에 대한 양자 화학 계산에서 클러스터 크기와 결정학적 위상이 고려되어야 함을 제시한다.

Monte Carlo Simulations and DFT Studies of the Structural Properties of Silicon Oxide Clusters Reacting with a Water Molecule

  • Jisu Lee;Gyun-Tack Bae
    • 대한화학회지
    • /
    • 제67권5호
    • /
    • pp.333-338
    • /
    • 2023
  • In this study, the H2O reaction with SiO clusters was investigated using ab initio Monte Carlo simulations and density functional theory calculations. Three chemistry models, PBE1/DGDZVP (Model 1), PBE1/DGDZVP (Si atom), and aug-cc-pVDZ (O and H atoms), (Model 2) and PBE1/aug-cc-pVDZ (Model 3), were used. The average bond lengths, as well as the relative and reaction energies, were calculated using Models 1, 2, and 3. The average bond lengths of Si-O and O-H are 1.67-1.75 Å and 0.96-0.97 Å, respectively, using Models 1, 2, and 3. The most stable structures were formed by the H transfer from an H2O molecule except for Si3O3-H2O-1 cluster. The Si3O3 cluster with H2O exhibited the lowest reaction energy. In addition, the Bader charge distributions of the SinOn and (SiO)n-H2O clusters with n = 1-7 were calculated using Model 1. We determined that the reaction sites between H2O and the SiO clusters possessed the highest fraction of electrons.

자동 목표물 인식 시스템을 위한 클러스터 기반 투영기법과 혼합 전문가 구조 (Cluster-based Linear Projection and %ixture of Experts Model for ATR System)

  • 신호철;최재철;이진성;조주현;김성대
    • 대한전자공학회논문지SP
    • /
    • 제40권3호
    • /
    • pp.203-216
    • /
    • 2003
  • In this paper a new feature extraction and target classification method is proposed for the recognition part of FLIR(Forwar Looking Infrared)-image-based ATR system. Proposed feature extraction method is "cluster(=set of classes)-based"version of previous fisherfaces method that is known by its robustness to illumination changes in face recognition. Expecially introduced class clustering and cluster-based projection method maximizes the performance of fisherfaces method. Proposed target image classification method is based on the mixture of experts model which consists of RBF-type experts and MLP-type gating networks. Mixture of experts model is well-suited with ATR system because it should recognizee various targets in complexed feature space by variously mixed conditions. In proposed classification method, one expert takes charge of one cluster and the separated structure with experts reduces the complexity of feature space and achieves more accurate local discrimination between classes. Proposed feature extraction and classification method showed distinguished performances in recognition test with customized. FLIR-vehicle-image database. Expecially robustness to pixelwise sensor noise and un-wanted intensity variations was verified by simulation.

Electronic Structure and Properties of High-Tc Superconductor Y-Ba-Cu-O. 1. Oxygen-deficiency in the $YBa_2Cu_3O_x $Superconductor ($6{\leq}{\times}{\leq}7$)

  • U-Hyon Paek;U-Sung Choi;Kee-Hag Lee;Chang-Hong Kim
    • Bulletin of the Korean Chemical Society
    • /
    • 제10권6호
    • /
    • pp.504-509
    • /
    • 1989
  • The effect of oxygen-deficiency on the charge distributions and orbital energies for small copper oxide clusters representing the superconducting materials $YBa_2Cu_3O_x (6{\leq}x{\leq}7)$ were investigated by the extended Huckel molecular orbital (EHMO) method with the tight-binding model. Our calculations show +3 oxidation state of Cu(1) in the $CuO_3$ chain and +2 or +1 of Cu(2) in the $CuO_2$ layers for $YBa_2Cu_3O_7$ with the nominal charge of $Cu_3$ = +7 (or +5), while for $YBa_2Cu_3O_6$ +1 oxidation state of Cu(1) and +3 (or +2) of Cu(2) in the $CuO_2$ layers with the nominal charge of $Cu_3$ = +7 (or +5). For $Cu_3O_{12}$ cluster representing $YBa_2Cu_3O_7$ with the nominal charge of $Cu_3$ = +7 the Cu(2) $d_{{x^2}-{y^2}}$ orbitals in the $CuO_2$ layers is a typical Jahn-Teller $d^9$ system with the partial hole and the Cu(1) $d_{{_z2}-{_y2}}$ orbital in the $CuO_3$ chain contains hole occupancy. For $Cu_3O_{10}$ cluster representing $YBa_2Cu_3O_6$ with the nominal charge of Cu = +5 the orbital character of the highest partially occupied MO (HPOMO) and the lowest completely unoccupied MO (LCUMO) of $Cu_3O_{12}$ representing $YBa_2Cu_3O_7$ with the nominal charge of $Cu_3$ = +7 is reversed, and the character of Cu(1) $d{{x^2}-{y^2}}$ orbital of LCUMO of the $Cu_3O_{12} $cluster is vanished. It is suggested that the local crystal field environment of Cu(1) by the oxygens in the Cu(1) chain may play a vital role in conductivity and superconductivity, either alone or through cooperative electronic coupling with the Cu(2) layers in $YBa_2Cu_3O_7.$.

Role of Charge Produced by the Gas Activation in the CVD Diamond Process

  • Hwang, Nong-Moon;Park, Hwang-Kyoon;Suk Joong L. Kang
    • The Korean Journal of Ceramics
    • /
    • 제3권1호
    • /
    • pp.5-12
    • /
    • 1997
  • Charged carbon clusters which are formed by the gas activation are suggested to be responsible for the formation of the metastable diamond film. The number of carbon atoms in the cluster that can reverse the stability between diamond and graphite by the capillary effect increases sensitively with increasing the surface energy ratio of graphite to diamond. The gas activation process produces charges such as electrons and ions, which are energetically the strong heterogeneous nucleation sites for the supersaturated carbon vapor, leading to the formation of the charged clusters. Once the carbon clusters are charged, the surface energy of diamond can be reduced by the electrical double layer while that of graphite cannot because diamond is dielectric and graphite is conducting. The unusual phenomena observed in the chemical vapor deposition diamond process can be successfully approached by the charged cluster model. These phenomena include the diamond deposition with the simultaneous graphite etching, which is known as the thermodynamic paradox and the preferential formation of diamond on the convex edge, which is against the well-established concept of the heterogeneous nucleation.

  • PDF

Deposition of Yttria Stabilized Zirconia by the Thermal CVD Process

  • In Deok Jeon;Latifa Gueroudji;Nong M. Hwang
    • The Korean Journal of Ceramics
    • /
    • 제5권2호
    • /
    • pp.131-136
    • /
    • 1999
  • Yttria stabilized zirconia(YSZ) films were deposited on porous NiO substrates and quartz plates by the thermal CVD using $ZrCl_4, YCl_3$ as precursors, and $O_2$ as a reactive gas at atmospheric pressure. The evaporation temperature of $ZrCl_4$ was varied from $250^{\circ}C$ to $550^{\circ}C$ while the temperatures of $YCl_3$ and the substrate were varied from $1000^{\circ}C$ to $1030^{\circ}C$. As the evaporation temperature of $ZrCl_4$ increased, the deposition rate of $ZrO_2$ decreased, contrary to our expectation. As a result of the decreased deposition rate of $ZrO_2$, the yttria content increase. The high evaporation temperature of $ZrCl_4$ makes the well-faceted crystal while the low evaporation temperature leads to the cauliflower-shaped structure. The dependence of the evaporation temperature on the growth rate and the morphological evolution was interpreted by the charged cluster model.

  • PDF

An Extended $H\ddot{u}ckel$ Study of Two Dimensional Layered Compound: FeOCl

  • Kim, Sang Ho;Kim Hojing
    • Bulletin of the Korean Chemical Society
    • /
    • 제14권1호
    • /
    • pp.132-137
    • /
    • 1993
  • The electronic structure of two dimensional layered compound, FeOCl, is studied with the band model and the cluster model approximation employing Extended-Huckel (EH) method. We examine the effects of intercalation (e.g., localization of transferred electron, conductivity increase). FeOCl has the electronic structure typical for layered compounds as expected. For FeOCl-$Li_{1/2}$ system, the charge transfer from Li to the FeOCl lattice occurs, and electrons are built up almost exclusively on Fe atoms. The partially filled band of FeOCl-$Li_{1/2}$ complex is responsible for the increase in conductivity.

New mechanism of thin film growth by charged clusters

  • Hwang, Nong-Moon;Kim, Doh-Yeon
    • 한국결정성장학회지
    • /
    • 제9권3호
    • /
    • pp.289-294
    • /
    • 1999
  • The charged clusters or particles, which contain hundreds to thousands of atoms or even more, are suggested to from in the gas phase in the thin film processes such as CVD, thermal evaporation, laser ablation, and flame deposition. All of these processes are also phase synthesis of the nanoparticels. Ion-induced or photo-induced nucleation is the main mechanism for the formation of these nanoclusters or nanoparticles in the gas phase. Charge clusters can make a dense film because of its self-organizing characteristics while neutral ones make a porous skeletal structure because of its Brownian coagulation. The charged cluster model can successfully explain the unusual phenomenon of simultaneous deposition and etching taking place in diamond and silicon CVD processes. It also provides a new interpretation on the selective deposition on a conducting material in the CVD process. The epitaxial sticking of the charged clusters on the growing surface is getting difficult as the cluster size increases, resulting in the nanostructure such as cauliflower or granular structures.

  • PDF

분자궤도계산법에 의한 $\beta$-$MnO_2$의 전자상태 및 화학결합 계산 (Calculation on Electronic State and Chemical Bonding of $\beta$-$MnO_2$ by DV-X$\alpha$ Method)

  • 이동윤;김봉서;송재성;김현식
    • 한국결정학회지
    • /
    • 제14권1호
    • /
    • pp.16-23
    • /
    • 2003
  • β-MnO₂ 전자상태와 화학결합을 하트리-폭-슬레이터 근사를 사용하는 제 1원리 분자 궤도법의 일종인 DV-X/sub α/ 법에 의해 이론적으로 조사하였다. 벌크상의 β-MnO₂에 대한 상태를 해석하기에 적합한 클러스터 모델을 결정하기 위하여, 여러 가지 다른 크기를 지닌 수종의 클러스터 모델들에 대한 계산을 행하였다. 실험적으로 측정된 XPS와 이론적으로 계산된 XPS를 비교함으로써, Mn/sub 15/O/sub 56/ 모델이 β-MnO₂의 전자 상태와 화학 결합을 계산하기에 가장 적합한 모델임을 결정하였다. 이 모델을 사용하여 에너지 준위, 상태 밀도, 유효 공유 결합 전하, 유효 전하, 전자 밀도 분포를 구하고, 이에 대한 고찰을 행하였다.