The Effect of Lattice Topology on Benzyl Alcohol Adsorption on Kaolinite Surfaces: Quantum Chemical Calculations of Mulliken Charges and Magnetic Shielding Tensor

캐올리나이트 규산염 층과 벤질알코올의 반응에 대한 양자화학계산에서 결정학적 위상이 멀리켄 전하와 자기 차폐 텐서에 미치는 영향

  • Lee, Bum-Han (Laboratory of Physics and Chemistry of Earth Materials, School of Earth and Environmental Sciences, Seoul National University) ;
  • Lee, Sung-Keun (Laboratory of Physics and Chemistry of Earth Materials, School of Earth and Environmental Sciences, Seoul National University)
  • 이범한 (서울대학교 지구환경과학부 지구물질물리화학 연구실) ;
  • 이성근 (서울대학교 지구환경과학부 지구물질물리화학 연구실)
  • Published : 2007.12.30

Abstract

In order to have better insights into adsorption of organic molecules on kaolinite surfaces, we performed quantum chemical calculations of interaction between three different model clusters of kaolinite siloxane surfaces and benzyl alcohol, with emphasis on the effect of size and lattice topology of the cluster on the variation of electron density and magnetic shielding tensor. Model cluster 1 is an ideal silicate tetrahedral surface that consists of 7 hexagonal rings, and model cluster 2 is composed of 7 ditrigonal siloxane rings with crystallographically distinct basal oxygen atoms in the cluster, and finally model cluster 3 has both tetrahedral and octahedral layers. The Mulliken charge analysis shows that siloxane surface of model cluster 3 undergoes the largest electron density transfer after the benzyl alcohol adsorption and that of model cluster 1 is apparently larger than that of model cluster 2. The difference of Mulliken charges of basal oxygen atoms before and after the adsorption is positively correlated with hydrogen bond strength. NMR chemical shielding tensor calculation of clusters without benryl alcohol shows that three different basal oxygen atoms (O3, O4, and O5) in model cluster 2 have the isotropic magnetic shielding tensor as $228.2{\pm}3.9,\;228.9{\pm}3.4,\;and\;222.3{\pm}3.0ppm$, respectively. After the adsorption, the difference of isotropic chemical shift varies from 1 to 5.5 ppm fer model cluster 1 and 2 while model cluster 2 apparently shows larger changes in isotropic chemical shift. The chemical shift of oxygen atoms is also positively correlated with electron density transfer. The current results show that the adsorption of benzyl alcohol on the kaolinite siloxane surfaces can largely be dominated by a weak hydrogen bonding and electrostatic force (charge-charge interaction) and demonstrate the importance of the cluster site and the lattice topology of surfaces on the adsorption behavior of the organic molecules on clay surfaces.

본 연구에서는 점토광물 표면 클러스터의 크기와 결정학적 위상이 전자 밀도와 자기 차폐 텐서에 미치는 영향을 살펴보기 위하여 캐올리나이트 규산염 층을 대표하는 세 개의 서로 다른 위상의 모델 클러스터와 벤질 알코올과의 상호작용에 대해 다양한 수준의 양자화학 계산을 수행하였다. 모델 클러스터 1은 단순화된 7개의 규산염 고리로 이루어졌고, 모델 클러스터 2는 결정학적 위상을 가진 7개의 규산염 고리로 이루어졌으며, 모델 클러스터 3은 세 개의 규산염 고리와 팔면체 고리로 이루어져 있다. 멀리켄 전하 계산 결과 벤질 알코올과의 반응 후의 상대적인 전자 밀도 이동의 크기는 모델클러스터 3의 사면체 쪽 > 모델 클러스터 1 > 모델 클러스터 2 > 모델 클러스터 3의 팔면체 쪽의 순으로 계산되었다. 또한 벤질 알코올과 강한 수소 결합을 하는 원자들의 전자 밀도 이동이 상대적으로 크다 벤질 알코올 흡착 전에 대한 사면체 표면 원자들의 자기 차폐 텐서 결과는 결정학적 위상을 고려하지 않은 경우 표면 중심으로부터의 거리가 비슷한 산소들끼리 유사한 등방 자기 차폐 텐서 값들을 갖고, 결정학적 위상을 고려한 경우는 결정학적으로 서로 다른 산소 자리(O3, O4, O5)에 대해 각각 $228.2{\pm}3.9,\;228.9{\pm}3.4,\;222.3{\pm}3.0ppm$으로 계산되었다. 흡착 전후의 산소 원자의 화학 차폐의 차이는 알코올과 근접한 산소들에서 약 $1{\sim}5.5ppm$ 정도의 변화가 나타나며 이러한 변화는 최근의 고분해능 이차원 핵자기공명분광 분석을 이용하면 실험으로 관찰할 수 있을 것으로 예상된다. 또한 모델 클러스터 2의 화학 차폐의 변화는 모델 클러스터 1보다 상대적으로 큰 특징을 보인다. 전자밀도 이동과 화학 차폐의 변화는 약한 양의 상관관계를 가진다. 이러한 결과들은 캐올리나이트 규산염 사면체 층과 벤질 알코올이 약한 수소 결합과 벤젠 고리와 규산염 층 산소 원자들의 약한 정전기적 힘에 의해 흡착되고 있음을 보여준다. 본 연구는 점토광물과 유기물에 대한 양자 화학 계산에서 클러스터 크기와 결정학적 위상이 고려되어야 함을 제시한다.

Keywords

References

  1. Akyuz, S., Akyuz, T. and Davies, J.E.D. (2000) FTIR and FT-Raman spectroscopic investigations of adsorption of 2,2'-biquinoline by smectite group clay minerals from Anatolia. Vib. Spectrosc., 22, 11-17 https://doi.org/10.1016/S0924-2031(99)00058-2
  2. Bajpai, A.K. and Vishwakarma, N. (2003) Adsorption of polyvinylalcohol onto Fuller's earth surfaces. Colloid. Surface. A., 220, 117-130 https://doi.org/10.1016/S0927-7757(03)00073-6
  3. Becke, A.D. (1993) A new mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys., 98, 1372-1377 https://doi.org/10.1063/1.464304
  4. Benco, L., Tunega, D., Hafner, J. and Lischka, H. (2001) Upper limit of the O-H center dot center dot center dot O hydrogen bond. Ab initio study of the kaolinite structure. J. Phys. Chem. B, 105, 10812-10817 https://doi.org/10.1021/jp0124802
  5. Bernholc, J. (1999) Computational materials science: the era of applied quantum mechanics. Phys. Today, 30-35
  6. Castro, E.A.S. and Martins, J.B.L. (2005) Theoretical study of kaolinite. Int. J. Quantum Chem., 103, 550-556 https://doi.org/10.1002/qua.20547
  7. Catalano, J.G. and Brown, G.E. (2005) Uranyl adsorption onto montmorillonite: Evaluation of binding sites and carbonate complexation. Geochim. Cosmochim. Ac., 69, 2995-3005 https://doi.org/10.1016/j.gca.2005.01.025
  8. Chatterjee, A., Ebina, T., Iwasaki, T. and Mizukami, F. (2003) Intermolecular reactivity study to scale adsorption property of para- and meta-substituted nitrobenzene over 2 : 1 dioctahedral smectite. J. Chem. Phys., 118, 10212-10220 https://doi.org/10.1063/1.1572131
  9. Ditchfield, R. (1974) Self-consistent perturbation theory of diamagnetism. Mol. Phys., 27, 789-807 https://doi.org/10.1080/00268977400100711
  10. Esmer, K. (1998) Electrical conductivity of modified bentonites and FT-IR spectroscopic investigations of some aromatic molecules adsorbed by bentonites. Mater. Lett., 34, 398-404 https://doi.org/10.1016/S0167-577X(97)00196-1
  11. Ferreiro, E.A. and Bussetti, S.G. (2003) Partial specific adsorption of organic molecules in binary mixtures of adsorbents: 2,2'-bipyridine on kaolinite and hematite and 1,10-phenanthroline on montmorillonite and hydroxy-Al montmorillonite. J. Colloid. .Interf. Sci., 262, 32-37 https://doi.org/10.1016/S0021-9797(03)00074-2
  12. Foresman, J.B. and Frisch, AE. (1996) Exploring Chemistry with Electronic Structure Methods, Gaussian, Inc., Pittsburgh, 302p
  13. Forland, G.M. (2001) Adsorption of benzyl alcohol onto alumina and kaolinite surfaces from a nonaqueous solution. J. Colloid. Interf. Sci., 242, 477- 479 https://doi.org/10.1006/jcis.2001.7831
  14. Forland, G.M., Borve, K.J., Hoiland, H. and Skauge, A. (1995) Adsorption of Short-Chain Alcohols from Decane Solutions onto Kaolinite. J. Colloid. .Interf. Sci., 171, 261-269 https://doi.org/10.1006/jcis.1995.1179
  15. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, O.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez. C. and Pople, J.A. (2004) Gaussian 03. Gaussian, Inc., Wallingford
  16. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Zakrzewski, V.G., Montgomery, J.J.A., Stratmann, R.E., Burant, J.C., Dapprich, S., Millam, J.M., Daniels, A.D., Kudin, K.N., Strain, M.C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, S., Petersson, G.A., Ayala, P.Y., Cui, Q., Morokuma, K., Rega, N., Salvador, P., Dannenberg, J.J., Malick, D.K., Rabuck, A.D., Raghavachari, A.D., Foresman, J.B., Cioslowski, J., Ortiz, J.V., Baboul, A.G., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P, Komaromi, I., Gomperts, R., Martin, R.L., Fox, O.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Andres, J.L., Gonzalez, C., Head-Gordon, M., Replogle, E.S. and Pople, J.A. (2002) Gaussian 98. Gaussian, Inc., Pittsburgh
  17. Fukutome, H. (1981) Unrestricted Hartree-Fock Theory and Its Applications to Molecules and Chemical Reactions. Int. J. Quantum Chem., 20, 955-1065 https://doi.org/10.1002/qua.560200502
  18. Gorb, L., Gu, J.D., Leszczynska, D. and Leszczynski, J. (2000) The interaction of nitrobenzene with the hydrate basal surface of montmorillonite: an ab initio study. Phys. Chem. Chem. Phys., 2, 5007- 5012 https://doi.org/10.1039/b004698l
  19. Gorb, L., Lutchyn, R., Zub, Y., Leszczynska, D. and Leszczynski, J. (2006) The origin of the interaction of 1,3,5-trinitrobenzene with siloxane surface of clay minerals. J. Mol. Struc.-Theochem, 766, 151-157 https://doi.org/10.1016/j.theochem.2006.04.013
  20. Goss, K.U. (1994) Adsorption of organic vapors on polar mineral surfaces and on a bulk water surface; development of an empirical predictive model. Environ. Sci. Technol., 28, 640-645 https://doi.org/10.1021/es00053a017
  21. Grandinetti, P.J., Baltisberger, J.H., Farnan, I., Stebbins, J.F., Werner, U. and Pines, A. (1995) Solid- State 17O Magic-Angle and Dynamic-Angle Spinning NMR Study of the SiO2 Polymorph Coesite. J. Phys. Chem., 99, 12341-12348 https://doi.org/10.1021/j100032a045
  22. Guimaraes, J.L., Peralta-Zamora, P. and Wypych, F. (1998) Covalent grafting of phenylphosphonate groups onto the interlamellar aluminol surface of kaolinite. J. Colloid. Interf. Sci., 206, 281-287 https://doi.org/10.1006/jcis.1998.5728
  23. Hammann, D.R., Schluter, M. and Chiang, C. (1979) Norm-Conserving Pseudopotentials. Phys. Rev. Lett., 43, 1494-1497 https://doi.org/10.1103/PhysRevLett.43.1494
  24. Hind, A.R., Bhargava, S.K. and McKinnon, A. (2001) At the solid/liquid interface: FTIR/ATR - the tool of choice. Adv. Colloid. Interfac., 93, 91-114 https://doi.org/10.1016/S0001-8686(00)00079-8
  25. Jaynes, W.F. and Boyd, S.A. (1991) Clay mineral type and organic compound sorption by hexadcyltrimethylammonium- exchanged clays. Soil Sci. Soc. Am. J., 55, 43-48 https://doi.org/10.2136/sssaj1991.03615995005500010007x
  26. Jokic, A., Cutler, J.N., Ponomarenko, E., van der Kamp, G. and Anderson, D.W. (2003) Organic carbon and sulphur compounds in wetland soils: Insights on structure and transformation processes using K-edge XANES and NMR spectroscopy. Geochim. Cosmochim. Ac., 67, 2585-2597 https://doi.org/10.1016/S0016-7037(03)00101-7
  27. Knezovich, J. P., Harrison, F.L. and Wilhelm, R.G. (1987) The Bioavailability of Sediment-sorbed Organic Chemicals: A Review. Water. Air. Soil. Poll., 32, 233-245
  28. Kowalska, M., Guler, H. and Cocke, D.L. (1994) Interactions of clay minerals with organic pollutants. Sci. Total Environ., 141, 223-240 https://doi.org/10.1016/0048-9697(94)90030-2
  29. Lee, B.H. and Lee, S.K. (in preparation) The effect of cluster size and lattice topology on quantum chemical calculations of the interaction between kaolinite siloxane surfaces and benzyl alcohol
  30. Lee, C., Yang, W. and Parr, R.G. (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, 37, 785-789 https://doi.org/10.1103/PhysRevB.37.785
  31. Lee, S.K. (2004) Structure of oxide glasses and melts at high temperature: quantum chemical calculation and solid state NMR. J. Phys. Chem. B, 108, 5889-5900 https://doi.org/10.1021/jp037575d
  32. Lee, S.K., Musgrave, C.B., Zhao, P. and Stebbins, J.F. (2001) Topological disorder and reactivity of borosilicate glasses: quantum chemical calculations and 17O and 11B NMR. J. Phys. Chem. B, 105, 12583-12595 https://doi.org/10.1021/jp012119f
  33. Lee, S.K. and Stebbins, J.F. (2003) O atom sites in natural kaolinite and muscovite: O-17 MAS and 3QMAS NMR study. Am. Mineral., 88, 493-500 https://doi.org/10.2138/am-2003-0403
  34. Lee, S.K. and Stebbins, J.F. (2006) Disorder and the extent of polymerization in calcium silicate and aluminosilicate glasses: O-17 NMR results and quantum chemical molecular orbital calculations. Geochim. Cosmochim Ac., 70, 4275-4286 https://doi.org/10.1016/j.gca.2006.06.1550
  35. Lee, S.S., Nagy, K.L., Fenter, P. and Sturchio, N.C. (2005) In situ x-ray reflectivity study of the mica- fulvic acid interface. Geochim. Cosmochim. Ac., 69, A491-A491
  36. McQuarrie, D.A. and Simon, J.D. (1997) Physical Chemistry: a molecular approach, University Science Books, Sausalito, 1360p
  37. Mehring, M. (1983) Principles of High Resolution NMR in Solids, Springer-Verlag, Berlin Heidelberg New York, 342p
  38. Meister, J. and Schwarz, W.H.E. (1994) Principal Components of Ionicity. J. Phys. Chem., 98, 8245- 8252 https://doi.org/10.1021/j100084a048
  39. Michalkova, A., Gorb, L., Ilchenko, M., Zhikol, O.A., Shishkin, O.V. and Leszczynski, J. (2004) Adsorption of sarin and soman on dickite: An ab initio ONIOM study. J. Phys. Chem. B, 108, 1918-1930 https://doi.org/10.1021/jp030391e
  40. Michalkova, A., Martinez, J., Zhikol, O.A., Gorb, L., Shishkin, O.V., Leszczynska, D. and Leszczynski, J. (2006) Theoretical study of adsorption of Sarin and Soman on tetrahedral edge clay mineral fragments. J. Phys. Chem. B, 110, 21175-21183 https://doi.org/10.1021/jp062306j
  41. Michalkova, A., Szymczak, I.J. and Leszczynski, J. (2005) Adsorption of 2,4-dinitrotoluene on dickite: The role of H-bonding. Struct. Chem., 16, 325- 337 https://doi.org/10.1007/s11224-005-4463-8
  42. Michalkova, A., Tunega, D. and Nagy, L.T. (2002) Theoretical study of interactions of dickite and kaolinite with small organic molecules. J. Mol. Struc.-Theochem, 581, 37-49 https://doi.org/10.1016/S0166-1280(01)00741-2
  43. Mikusinska-Planner, A. (1992) Structure of Liquid Benzyl Alcohol at 293 K. Acta Crystallogr. B, 48, 37-41 https://doi.org/10.1107/S0108768191010972
  44. Morrissey, F.A. and Grismer, M.E. (1999) Kinetics of volatile organic compound sorption/desorption on clay minerals. J. Contam. Hydrol., 36, 291-312 https://doi.org/10.1016/S0169-7722(98)00150-8
  45. Mulliken, R.S. (1955) Electronic population analysis on LCAO-MO molecular wave functions I. J. Chem. Phys., 23, 1833-1840 https://doi.org/10.1063/1.1740588
  46. Murgich, J. and Rodriguez M.I. (1998) Interatomic Interactions in the Adsorption of Asphaltenes and Resins on Kaolinite Calculated by Molecular Dynamics. Energ. Fuel., 12, 339-343 https://doi.org/10.1021/ef9701302
  47. Novotny, V. (1987) Applications of Nonaqueous Colloids. Colloid. Surface A, 24, 361-375 https://doi.org/10.1016/0166-6622(87)80241-X
  48. Oday, P.A., Brown, G.E. and Parks, G.A. (1994) X-ray absorption spectroscopy of cobalt (II) multinuclear surface complexes and surface precipitates on kaolinite. J. Colloid Interf. Sci., 165, 269-289 https://doi.org/10.1006/jcis.1994.1230
  49. Ogawa, M. and Kuroda, K. (1995) Photofunctions of Intercalation Compounds. Chem. Rev., 95, 399- 438 https://doi.org/10.1021/cr00034a005
  50. Park, C., Fenter, P.A., Sturchio, N.C. and Regalbuto, J.R. (2005) Probing outer-sphere adsorption of aqueous metal complexes at the oxide-water interface with resonant anomalous X-ray reflectivity. Phys. Rev. Lett., 94, 076104
  51. Pelmenschikov, A. and Leszczynski, J. (1999) Adsorption of 1,3,5-trinitrobenzene on the siloxane sites of clay minerals: Ab initio calculations of molecular models. J. Phys. Chem. B, 103, 6886- 6890 https://doi.org/10.1021/jp990091q
  52. Pennell, K.D., Rhue, R.D., Rao, P.S.C. and Johnston, C.T. (1992) Vapor-Phase Sorption of p-Xylene and Water on Soils and Clay Minerals. Environ. Sci. Technol., 26, 756-763 https://doi.org/10.1021/es00028a014
  53. Rytwo, G., Nir, S. and Margulies, L. (1995) Interactions of monovalent organic cations with montmorillonite - adsorption studies and model calculations. Soil Sci. Soc. Am. J., 59, 554-564 https://doi.org/10.2136/sssaj1995.03615995005900020041x
  54. Sauer, J., Ugliengo, P., Garrone, E. and Saunders, V.R. (1994) Theoretical Study of van der Waals Complexes at Surface Sites in Comparison with the Experiment. Chem. Rev., 94, 2095-2160 https://doi.org/10.1021/cr00031a014
  55. Simpson, A.J., Simpson, M.J., Kingery, W.L., Lefebvre, B.A., Moser, A., Williams, A.J., Kvasha, M. and Kelleher, B.P. (2006) The application of H-1 high-resolution magic-angle spinning NMR for the study of clay-organic associations in natural and synthetic complexes. Langmuir, 22, 4498-4503 https://doi.org/10.1021/la052679w
  56. Svensson, M., Humbel, S., Froese, R.D.J., Matsubara, T., Sieber, S. and Morokuma, K. (1996) ONIOM: A Multilayered Integrated MO + MM Method for Geometry Optimizations and Single Point Energy Predictions. A Test for Diels-Alder Reactions and Pt(P(t-Bu)3)2 + H2 Oxidative Addition. J. Phys. Chem., 100, 19357-19363 https://doi.org/10.1021/jp962071j
  57. Teppen, B.J., Yu, C.H., Newton, S.Q., Miller, D.M. and Schafer, L. (2002) Quantum molecular dynamics simulations regarding the dechlorination of trichloro ethene in the interlayer space of the 2 : 1 clay mineral nontronite. J. Phys. Chem. A, 106, 5498-5503 https://doi.org/10.1021/jp0132127
  58. Tossel, J.D. (2001). Calculating the NMR Properties of Minerals, Glasses, and Aqueous Species. In: Cygan, R.T. and Kubicki, J.D. (eds.), Molecular Modeling Theory: Applications in the Geosciences, Reviews in Mineralogy and Geochemistry, vol. 42, Mineral. Soc. America, 437-458
  59. Tunega, D., Haberhauer, G., Gerzabek, M.H. and Lischka, H. (2002) Theoretical study of adsorption sites on the (001) surfaces of 1 : 1 clay minerals. Langmuir, 18, 139-147 https://doi.org/10.1021/la010914e
  60. Tunney, J.J. and Detellier, C. (1996) Aluminosilicate Nanocomposite Materials. Poly(ethylene glycol)- Kaolinite Intercalates. Chem. Mater., 8, 927-935 https://doi.org/10.1021/cm9505299
  61. Ukrainczyk, L. and Smith, K.A. (1996) Solid state N-15 NMR study of pyridine adsorption on clay minerals Environ. Sci. Technol., 30, 3167-3176 https://doi.org/10.1021/es950735h
  62. van Duin, A.C.T. and Larter, S.R. (2001) Molecular dynamics investigation into the adsorption of organic compounds on kaolinite surfaces. Org. Geochem., 32, 143-150 https://doi.org/10.1016/S0146-6380(00)00143-1
  63. Wolinski, K., Hinton, J.F. and Pulay, P. (1990) Efficient Implementation of the Gauge-Independent Atomic Orbital Method for NMR Chemical Shift Calculations. J. Am. Chem. Soc., 112, 8251-8260 https://doi.org/10.1021/ja00179a005
  64. Wyckoff, R.W.G. (1968) Crystal Structures, Interscience Publishers. New York, 457p
  65. Xu, S.H. and Boyd, S.A. (1995) Cationic surfactant adsorption by swelling and nonswelling layer silicates. Langmuir, 11, 2508-2514 https://doi.org/10.1021/la00007a033
  66. Yariv, S. (1996) Thermo-IR-spectroscopy analysis of the interactions between organic pollutants and clay minerals. Thermochim. Acta, 274, 1-35 https://doi.org/10.1016/0040-6031(95)02708-4
  67. Yoon, T.H., Johnson, S.B., Musgrave, C.B. and Brown, G.E. (2004) Adsorption of organic matter at mineral/water interfaces: I. ATR-FTIR spectroscopic and quantum chemical study of oxalate adsorbed at boehmite/water and corundum/water interfaces. Geochim. Cosmochim. Ac., 68, 4505- 4518 https://doi.org/10.1016/j.gca.2004.04.025
  68. Yu, C.H., Newton, S.Q., Norman, M.A., Schafer, L. and Miller, D.M. (2003) Molecular dynamics simulations of adsorption of organic compounds at the clay mineral/aqueous solution interface. Struct. Chem., 14, 175-185 https://doi.org/10.1023/A:1022190416038
  69. Zhanpeisov, N.U., Adams, J.W., Larson, S.L., Weiss, C.A., Zhanpeisova, B.Z., Leszczynska, D. and Leszczynski, J. (1999) Cluster quantum chemical study of triaminotoluene interaction with a model clay surface. Struct. Chem., 10, 285-294 https://doi.org/10.1023/A:1022047018596