• Title/Summary/Keyword: Charge and discharge capacities

Search Result 60, Processing Time 0.021 seconds

Physicochemical and Electrochemical Characteristics of Carbon Nanomaterials and Carbon Nanomaterial-Silicon Composites

  • Kim, Soo-Jin;Hyun, Yura;Lee, Chang-Seop
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.5
    • /
    • pp.299-309
    • /
    • 2016
  • In this study, the physicochemical and electrochemical properties of carbon nanomaterials and synthesized nano-carbon/Si composites were studied. The nano-carbon/Si composites were ball-milled to a nano size and coated with pyrolytic carbon using Chemical Vapor Deposition (CVD). They were then finely mixed with respective nano-carbon materials. The physicochemical properties of samples were analyzed using Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS), Raman spectroscopy, X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), and surface area analyzer. The electrochemical characteristics were investigated using the galvanostatic charge-discharge and cyclic voltammetry (CV) measurements. Three-electrode cells were fabricated using the carbon nanomaterials and nano-carbon/Si composites as anode materials and LiPF6 and LiClO4 as electrolytes of Li secondary batteries. Reversibility using LiClO4 as an electrolyte was superior to that of LiPF6 as the electrolyte. The initial discharge capacities of nano-carbon/Si composites were increased compared to the initial discharge capacities of nano-carbon materials.

The Electrochemical Characteristics of $LiCoO_2$Cathode Materials as a function of Polyaniline contents (Polyaniline을 첨가한 $LiCoO_2$정극활물질의 전기화학적 특성)

  • 임동규;임석범;김영호;김은옥;류광선
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.667-670
    • /
    • 2000
  • The electrochemical characterization was conducted by the addition of chemically synthesized polyaniline on LiCoO$_2$electrode. From the results of XRD and SEM, the phase transition and microstructure were not found. Initial electrochemical characteristics of LiCoO$_2$electrode for lithium secondary battery were evaluated through the charge/discharge within the range of 4.3 V to 3.0 V versus Li/Li$^{+}$. Discharge capacity of LiCoO$_2$electrode without addition of Polyaniline were 160.21 mAh/g. But after addition of polyaniline, lower discharge capacities 25.7 mAh/g was found.d.

  • PDF

Enhancement on the Charge-discharge Property of Carbon Anode by the Addition of Metal Oxides in Li-ion Secondary Batteries (금속산화물 첨가방법에 의한 리튬이차전지 부극재료의 충방전 특성 개선)

  • 김정식
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.11
    • /
    • pp.1085-1089
    • /
    • 2003
  • In the present study effects of SnO$_2$-impregnation on the cell performance of Mesocarbon Microbeads (MCMB) electrode in the Li-ion battery have been investigated. Sn element was impreganted into MCMB powders by the chemical titration, and then post annealed at 250$^{\circ}C$ for 1 h in ambient atmosphere to be transformed as tin-oxide. From the measurement for the cell performance with the half cell in which the SnO$_2$-impregnated MCMB was used as an anode, the SnO$_2$-impregnated MCMB showed higher charge/discharge capacities, higher reversible specific charge capacity and better cycleability than a raw MCMB. As the amount of impregnated SnO$_2$ increased, both reversible and irreversible capacities increased.

Preparation and Analysis of$LiMn_2O_4$ Cathode Material substituted Mg and Zn (Mg와 Zn이 치환된 $LiMn_2O_4$ 정극 활물질의 제조 및 특성 분석)

  • Jeong, In-Seong;Gu, Hal-Bon;Han, Kyoo-Seung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.707-710
    • /
    • 2002
  • Spinel $LiMn_2O_4$ and $LiMn_{1.9}Mg_{0.05}Zn_{0.05}O_4$ powders were synthesized by solid-state method at $800^{\circ}C$ for 36h. Crystal structure and electrochemical properties were analyzed by X-ray diffraction, charge-discharge test, cyclic voltammetry and ac impedance to $LiMn_2O_4$ and $LiMn_{1.9}Mg_{0.05}Zn_{0.05}O_4/Li$. All cathode material showed spinel structure in X-ray diffraction. $LiMn_{1.9}Mg_{0.05}Zn_{0.05}O_4/Li$ cell substituted $Mg^{2+}$ and $Zn^{2+}$ showed excellent discharge capacities than other cells, which it presented about 120mAh/g at the 1st cycle and about 73mAh/g at the 250th cycle, respectively. AC impedance of $LiMn_{1.9}Mg_{0.05}Zn_{0.05}O_4/Li$ cells showed the similar resistance of about $65{\sim}110{\Omega}$ before cycling.

  • PDF

A Study on the Electrode Charcteristics of the Fluornated AB$_2$ Type Hydrogen Storage Alloys (불화 처리된 AB$_2$계 수소저장합금의 전극특성에 관한 연구)

  • 박호영;이명호;조원일;조병래;이성래;주재백;윤경석
    • Journal of the Korean institute of surface engineering
    • /
    • v.30 no.4
    • /
    • pp.262-271
    • /
    • 1997
  • Nickel-matal hydride(Ni-MH) batteries are receiving attention as non-pollunting. high performance rehargeable energy stoage system. The performance of Ni-Mh is significantly influenced by the hydrogen storage alloy materiels used as an anode material. Recently, having discharge capacities higher than the $AB_5$-type hydrogen storage alloys, the Zr-based $AB_2$-Type hydrogen storage alloys has remaining problems regarding cycle life and self-dischareg. These problems need to be solved by improvements in the alloy design and/or surface treatment. This work investiggates the effects the effects of surface property by fluorination on $Zr_{0.7}Ti_{0.3}V_{0.4}Mn_{0.4}Ni{1.2}$ composittion $AB_2$-Type hydrogen storage alloys. EPMA, SEM and AES techniques were used for surface analysis, and the crystal structure was characterized by constant current cycling test and potential sweep methods. Fluorination was found to be effective when La-was incorporated into the alloy, and has unique morphology, higher reactivity, and at the same time formed a protective film. Through, fluorination, the cycle life of an electrode was found to increase significantly, charge/discharge characteristics of the electrode the potential difference between the charge/discharge plateau, i.e polarization(overpotential)were improved.

  • PDF

Electrochemical Properties of Zr0.8Ti0.2Mn0.4V0.6Ni1-xFex Alloy Electrodes (Zr0.8Ti0.2Mn0.4V0.6Ni1-xFex 합금 전극의 전기화학적 특성)

  • Song, MyoungYoup;Kwon, IkHyun;Lee, DongSub
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.3
    • /
    • pp.181-189
    • /
    • 2002
  • A series of multicomponent $Zr_{0.8}Ti_{0.2}Mn_{0.4}V_{0.6}Ni_{1-x}Fe_{x}$ (x=0.00, 0.08, 0.15, 0.22, and 0.30) alloys are prepared and their oystal structure and P-C-T curves are examined. The electrochemical properties of these allqys such as activation conditions, discharge capacity, cycling performance are also investigated. $Zr_{0.8}Ti_{0.2}Mn_{0.4}V_{0.6}Ni_{1-x}Fe_{x}$ (x=0.00, 0.08, 0.15, 0.22 and 0.30) have the C14 Laves phase hexagonal structure. The electrode was activated by the hot-charging treatment. The best activation conditions were the current density 120 mA/g and the hot-charging time 12h at $80^{\circ}C$ in the case of the alloy with x=0.00. The discharge capacity increased rapidly until the fourth cycle and then decreased. The discharge capacity increased again from the 13th cycle, arriving at 234 mAh/g at the 50th cycle. The discharge capacily just after activation decreases with the increase in the amount of the substituted Fe but the cycling performance is improved. The discharge capacity after activation of the alloy with x=0.00 is 157 mAh/g at the current density 120 mA/g. $Zr_{0.8}Ti_{0.2}Mn_{0.4}V_{0.6}Ni_{0.85}Fe_{0.15}$ is a good composition with a medium quantity of discharge capacities and a good cycling performance. The ICP analysis of the electrolyte for these electrodes after 50 charge-discharge cycles shows that the concentrations of V and Zr are relatively high. Another series of multicomponent $Zr_{0.8}Ti_{0.2}Mn_{0.4}V_{0.6}Ni_{0.85}M_{0.15}$ (M = Fe, Co, Cu, Mo and Al) alloys are prepared. They also have the C14 Laves phase hexagonal structure. The alloys with M = Co and Fe have relatively larger hydrogen storage capacities. The discharge capacities just after activation are relatively large in the case of the alloys with M = Al and Cu. They are 212 and 170 mAh/g, respectivety, at the current density 120mA/g. The $Zr_{0.8}Ti_{0.2}Mn_{0.4}V_{0.6}Ni_{0.85}Co_{0.15}$ alloy is the best one with a relatively large discharge capacity and a good cycling performance.

Electrochemical Properties of Tin oxide-flyash Composite for Lithium Ion Polymer Battery (리튬 이온 폴리머 전지용 Tin oxide-flyash Composite 전극의 전기화학적 특성)

  • Kim, Jong-Uk;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.88-90
    • /
    • 2003
  • The purpose of this study is to research and develop tin oxide-flash composite for lithium Ion polymer battery. Tin oxide is one of the promising material as a electrode active material for lithium Ion polymer battery (LIPB). Tin-based oxides have theoretical volumetric and gravimetric capacities that are four and two times that of carbon, respectively. We investigated cyclic voltammetry and charge/discharge cycling of SnO-flyash/SPE/Li cells. The first discharge capacity of SnO-flyash composite anode was 720 mAh/g. The discharge capacity of SnO-flyash composite anode 412 and 314 mAh/g at cycle 2 and 10 at room temperature, respectively. The SnO-flyash composite anode with PVDF-PMMA-PC-EC-$LiClO_4$ electrolyte showed good capacity with cycling.

  • PDF

Electrochemical Properties of Pyrolytic Carbon and Boron-doped Carbon for Anode Materials In Li-ion Secondary Batteries (리튬 이온 이차전지 부극용 열분해 탄소 및 붕소첨가 탄소의 전기화학적 특성)

  • Kwon, Ik-Hyun;Song, Myoung-Youp;Bang, Eui-Yong;Han, Young-Soo;Kim, Ki-Tae;Lee, Jai-Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.1
    • /
    • pp.30-38
    • /
    • 2002
  • Disordered carbon and boron-substituted disordered carbons $C_{l-x}B_x(x=0.05,\;0.10,\;0.20)$ were synthesized by Pyrolysis of LPG(liquid Propane gas)and $BCl_3$. Their electrochemical properties as anode materials for Li-ion secondary batteries were then investigated. When PVDF is added to the sample in a weight ratio 5 : 95, the disordered carbon with x=0.00 had the first discharge capacity 374 mAh/g. Its cycling performance was relatively good from the second cycle and it had the discharge capacity 258 mAh/g at the 10th cycle. When PVDF is added to the sample in a weight ratio 5 : 95, the sample with x=0.05 among the samples $C_{l-x}B_x(x=0.05,\;0.10,\;0.20)$ exhibited the largest first discharge capacity 860 mAh/g and discharge capacity 181 mAh/g at the 10th cycle. All the samples had similar cycling performances from the second cycle. The sample $C_{0.90}B_{0.10}$ showed the best electrochemical properties as a anode materials fur Li-ion secondary battery from the view points of the first discharge capacity(853 mAh/g when $10w1.\%$ PVDF is used), cycling performance, discharge capacity(400mAh/g at the 10th cycle when $10wt.\%$ PVDF is used). All the samples showed generally larger charge and discharge capacities when $10wt.\%$ PVDF ratter than $5wt.\%$ PVDF is used. The plateau region in the range of voltage lower than 1.25V becomes larger probably since the structure becomes less disordered by the addition of boron. When boron is added, the charge and discharge capacities decreased suddenly at the second cycle. This may be become only a part of Li are reversibly deintercalated and intercalated and a part of Li which are strongly combined with B are not deintercalated. The increases in charge and discharge capacities are considered to be resulted from the increase in the potential of Li in the boron-added carbons, caused by the strengthening of the chemical bond between the intercalated Li and the boron-carbon host since the boron acts as electron acceptor.

Electrochemical Properties and Estimation on Active Material LiMnO2 Synthesis for Secondary

  • Wee, Sung-Dong;Kim, Jong-Uk;Gu, Hal-Bon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.2
    • /
    • pp.35-39
    • /
    • 2003
  • This paper is contents on the orthorhombic crystalline calcined by the solid phase method with LiMnO$_2$ thin film structured as the result which an average pore diameter of power was 132.3${\AA}$ in porosity analysis. Voltage ranges are able to get the properties of charge and discharge for experimental results of LiMnO$_2$ thin film were 2.2V 4.3V. The current density and scan speed were 0. 1㎃/$\textrm{cm}^2$ and 0.2㎷/sec respectively. Properties of the charge and discharge are obtained by optimum experiment condition parameters. Li dense ratio of the LiMnO$_2$ thin film that discharged capacities were 87㎃h/g have been 96.9[ppm] at 670.784[nm] wavelength. The dense ratio of Mn analyzed to 837[ppm] at 257.610[nm] wavelength. It can be estimated the quality of the LiMnO$_2$ thin film as that the wrong LiMnO$_2$ thin film pulled up from cell of electrolyte and became dry it at 800$^{\circ}C$. The results of SEM and XRD were the same as that of original researchers.

Re-synthesis and Electrochemical Characteristics of LiFePO4 Cathode Materials Recycled from Scrap Electrodes

  • Kim, Hyung Sun;Shin, Eun Jung
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.851-855
    • /
    • 2013
  • This paper describes an environmentally friendly process for the recovery of $LiFePO_4$ cathode materials from scrap electrodes by a simple thermal treatment method. The active materials were easily separated from the aluminum substrate foil and polymeric binders were also decomposed at different temperatures ($400^{\circ}C$, $500^{\circ}C$, $600^{\circ}C$) for 30 min under nitrogen gas flow. The samples were characterized by X-ray diffraction (XRD), scanning electronic microscopy (SEM), Raman spectroscopy, Thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The electrochemical properties of the recycled $LiFePO_4$ cathode were evaluated by galvanostatic charge and discharge modes. The specific charge/discharge capacities of the recycled $LiFePO_4$ cathode were similar to those of the original $LiFePO_4$ cathode. The $LiFePO_4$ cathode material recovered at $500^{\circ}C$ exhibits a somewhat higher capacity than those of other recovered materials at high current rates. The recycled $LiFePO_4$ cathode also showed a good cycling performance.