DOI QR코드

DOI QR Code

Electrochemical Properties of Pyrolytic Carbon and Boron-doped Carbon for Anode Materials In Li-ion Secondary Batteries

리튬 이온 이차전지 부극용 열분해 탄소 및 붕소첨가 탄소의 전기화학적 특성

  • Kwon, Ik-Hyun (Division of Advanced Materials Engineering, Automobile Hi-Technology Research Institute) ;
  • Song, Myoung-Youp (Division of Advanced Materials Engineering, Automobile Hi-Technology Research Institute) ;
  • Bang, Eui-Yong (Division of Advanced Materials Engineering, Automobile Hi-Technology Research Institute) ;
  • Han, Young-Soo (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kim, Ki-Tae (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Lee, Jai-Young (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology)
  • 권익현 (전북대학교 자동차신기술연구소 신소재공학부) ;
  • 송명엽 (전북대학교 자동차신기술연구소 신소재공학부) ;
  • 방의용 (전북대학교 자동차신기술연구소 신소재공학부) ;
  • 한영수 (한국과학기술원 재료공학과) ;
  • 김기태 (한국과학기술원 재료공학과) ;
  • 이재영 (한국과학기술원 재료공학과)
  • Published : 2002.02.01

Abstract

Disordered carbon and boron-substituted disordered carbons $C_{l-x}B_x(x=0.05,\;0.10,\;0.20)$ were synthesized by Pyrolysis of LPG(liquid Propane gas)and $BCl_3$. Their electrochemical properties as anode materials for Li-ion secondary batteries were then investigated. When PVDF is added to the sample in a weight ratio 5 : 95, the disordered carbon with x=0.00 had the first discharge capacity 374 mAh/g. Its cycling performance was relatively good from the second cycle and it had the discharge capacity 258 mAh/g at the 10th cycle. When PVDF is added to the sample in a weight ratio 5 : 95, the sample with x=0.05 among the samples $C_{l-x}B_x(x=0.05,\;0.10,\;0.20)$ exhibited the largest first discharge capacity 860 mAh/g and discharge capacity 181 mAh/g at the 10th cycle. All the samples had similar cycling performances from the second cycle. The sample $C_{0.90}B_{0.10}$ showed the best electrochemical properties as a anode materials fur Li-ion secondary battery from the view points of the first discharge capacity(853 mAh/g when $10w1.\%$ PVDF is used), cycling performance, discharge capacity(400mAh/g at the 10th cycle when $10wt.\%$ PVDF is used). All the samples showed generally larger charge and discharge capacities when $10wt.\%$ PVDF ratter than $5wt.\%$ PVDF is used. The plateau region in the range of voltage lower than 1.25V becomes larger probably since the structure becomes less disordered by the addition of boron. When boron is added, the charge and discharge capacities decreased suddenly at the second cycle. This may be become only a part of Li are reversibly deintercalated and intercalated and a part of Li which are strongly combined with B are not deintercalated. The increases in charge and discharge capacities are considered to be resulted from the increase in the potential of Li in the boron-added carbons, caused by the strengthening of the chemical bond between the intercalated Li and the boron-carbon host since the boron acts as electron acceptor.

탄화수소가스를 고온$(1000^{\circ}C)$에서 열분해 하여 고상화하는 기상 열분해법을 사용하여 저결정질 탄소재를 제조하고 같은 방법으로 붕소를 첨가한 저결정질 탄소재$C_{l-x}B_x(x=0.05,\;0.10,\;0.20)$를 제조하여, 리튬 이온 이차전지의 부극으로서의 전기화학적 특성을 조사하였다. 시료 대 PVDF를 95:5의 무게비로 첨가한 경우, 붕소를 첨가하지 않은 저 결정질 탄소재(x=0.00)는 초기 방전용량 374mAh/g을 나타내었으며, 제 2싸이클부터는 싸이클 성능이 비교적 우수하여 제 10싸이클에서 258mAh/g의 방전용량을 나타내었다. 시료 대 PVDF를 95:5의 무게비로 첨가한 경우, $C_{1-x}B_x(x=0.00,\;0.05,\;0.10\;0.20)$ 시료들 중에서 x=0.05 조성의 시료는 가장 큰 초기 방전용량 860mAh/g을 나타내었으며, 10번째 싸이클에서 181mAh/g의 방전용량을 나타내었다. 제 2싸이클부터 싸이클 성능은 모두가 비슷하게 나타났다 초기방전 용량(PVDF $10wt.\%$ 사용시, 853mAh/g), 싸이클 성능, 방전용량(PVDF $10wt.\%$사용시 10번째 싸이클에서 400mAh/g)면에서 $C_{0.90}B_{0.10}$ 시료가 리튬이온 이차전지의 부극으로서의 가장 우수한 전기화학적 특성을 나타내었다. 합성한 탄소에 NMP를 용매로 한 액상 혼합 바인더(PVDF)를 90:10의 무게비로 첨가한 경우가 95:5의 무게비로 첨가한 경우보다 대체로 모든 조성에서 충$\cdot$방전용량이 크게 나타났다. 붕소가 첨가되어 덜 disordered된 구조가 됨으로써 1.25V보다 낮은 전압 부분에서 평탄구역이 증가하는 것으로 판단된다. 붕소가 첨가된 경우 충$\cdot$방전용량이 제 2싸이클에서부터 급격히 감소하였는데, 이는 첨가된 붕소가 제 1싸이클에서 삽입되는 Li과 일부는 강하게 결합하여 추출이 안되고 일부만이 다시 가역적으로 추출$\cdot$삽입되기 때문으로 생각된다. 붕소 첨가에 의한 충$\cdot$방전용량의 증가는, 붕소가 electron acceptor로 작용하여 삽입된 Li와 붕소-탄소 host 사이의 결합 강도를 증가시킴으로써 붕소치환 된 탄소에서 Li의 전위를 상승시키기 때문에 일어난다고 사려된다.

Keywords

References

  1. J. Electrochem Soc. v.141 T. Ohzuku;A. Ueda https://doi.org/10.1149/1.2059267
  2. J. Electrochem Soc. v.139 J.R. Dahn;J.N. Reimers
  3. J. Power Sources v.40 M. Yoshio;H. Tanaka;K. Tominga;H. Noguchi https://doi.org/10.1016/0378-7753(92)80023-5
  4. J. Power Sources v.43 J.M. Tarascon;H. Tanaka;K. Tominaga;H. Noguchi
  5. J. Electrochem Soc. v.138 J.R. Dahn;U. von Sacken;M.R. Jukow;H. Aljanaby https://doi.org/10.1149/1.2085950
  6. Solid State Ionics v.69 K. Ozawa https://doi.org/10.1016/0167-2738(94)90411-1
  7. Solid State Ionics v.53-56 C. Delmas;I. Saadoune https://doi.org/10.1016/0167-2738(92)90402-B
  8. Solid State Ionics v.66 E. Zhecheva;R. Stoyanova https://doi.org/10.1016/0167-2738(93)90037-4
  9. J. Electrochem. Soc. v.141 no.8 A. Ueda;T. Ohzuku https://doi.org/10.1149/1.2055051
  10. J. Power Sources v.54 B. Banov;J. Bourilkov;M. Mladenov https://doi.org/10.1016/0378-7753(94)02082-E
  11. J. Electrochem. Soc. v.142 no.12 R. Alcantara;J. Morales;J.L. Tirado https://doi.org/10.1149/1.2048453
  12. Solid State Ionics v.90 A. Rougier;I. Saadoune;P. Gravereau;P. Willmann;C. Delmas https://doi.org/10.1016/S0167-2738(96)00370-0
  13. Solid State Ionics v.89 Y.M. Choi;S.I. Pyun;S.I. Moon https://doi.org/10.1016/0167-2738(96)00269-X
  14. 한국세라믹학회지 v.38 no.6 임호;강성구;장순호;송명엽
  15. Mat. Res. Bull. v.18 M.M. Thackeray;W.I.F. David;P.G. Bruce;J.B. Goodenough https://doi.org/10.1016/0025-5408(83)90138-1
  16. J. Power Sources v.41 A. Momchilov;V. Manev;A. Nassalevska https://doi.org/10.1016/0378-7753(93)80048-T
  17. J. Electrochem. Soc. v.69 J.M. Tarascon;D. Guyomard
  18. J. Electrochem. Soc. v.137 T. Ohzuku;M. Kitagawa;T. Hirai https://doi.org/10.1149/1.2086552
  19. J. Electrochem. Soc. v.141 J.M. Tarascon;W.R. McKinnon;F. Coowar;T.N. Bowmer;G. Amatucci;D. Guyomard https://doi.org/10.1149/1.2054941
  20. J. Electrochem. Soc. v.142 G. Pistoia;D. Zane;Y. Zhang https://doi.org/10.1149/1.2050052
  21. J. Electrochem. Soc. v.143 Y. Gao;J. R. Dahn https://doi.org/10.1149/1.1836393
  22. J. Electrochem. Soc. v.143 W. Liu;B. Dunn https://doi.org/10.1149/1.1836552
  23. J. Electrochem. Soc. v.143 Z. Jiang;K.M. Abraham https://doi.org/10.1149/1.1836684
  24. Solid State Ionics v.111 M.Y. Song;D.S. Ahn;S.G. Kang;S.H. Chang https://doi.org/10.1016/S0167-2738(98)00181-7
  25. J. Power Sources v.83 M.Y. Song;D.S. Ahn;H.R. Park https://doi.org/10.1016/S0378-7753(99)00256-6
  26. J. Electrochem. Soc. v.147 no.3 D.S. Ahn;M.Y. Song https://doi.org/10.1149/1.1393285
  27. J. Electrochem. Soc. v.142 A.M. Wilson;J.R. Dahn https://doi.org/10.1149/1.2043994
  28. 전기화학협회 추계대회 요지집 小丸篤雄(등)
  29. Phys. Rev. v.B45 J.R. Dahn(et al)
  30. 탄소재료학회 no.2월 桑原和未(등)
  31. J. Electrochem. Soc. v.141 no.4 B.M. Way;J.R. Dahn https://doi.org/10.1149/1.2054856