• Title/Summary/Keyword: Charge Pump Current

Search Result 112, Processing Time 0.032 seconds

High-Efficiency Charge Pump for CMOS Image Sensor (CMOS 이미지 센서를 위한 고효율 Charge Pump)

  • Kim, Ju-Ha;Jun, Young-Hyun;Kong, Bai-Sun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.5
    • /
    • pp.50-57
    • /
    • 2008
  • In this paper, a high-efficiency charge pump for use in CMOS image sensor(CIS) is proposed. The proposed charge pump pursues high pumping efficiency by minimizing the switching and reversion losses by taking advantage of operation characteristics of CIS. That is, the proposed charge pump minimizes the switching loss by dynamically controlling the size of clock driver, pumping capacitor, and charge transfer switch based on the operation phase of CIS pixel sensor. The charge pump also minimizes the reversion loss by guaranteeing a sufficient non-overlapping period of local clocks using a tri-state local clock driver adapting the schmitt trigger. Comparison results using a 0.13-um CMOS process technology indicate that the proposed charge pump achieves up to 49.1% reduction on power consumption under no loading current condition as compared to conventional charge pump. They also indicate that the charge pump provides 19.0% reduction on power consumption under the maximum loading current condition.

Exact analysis for overload of a charge-pump phase-locked loop (Charge-pump 위상 동기 회로의 과부하에 대한 정확한 해석)

  • 최은창;이범철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.12
    • /
    • pp.3069-3085
    • /
    • 1996
  • This paper shows an accurate charge-pump PLL model which considers the wave-form distortion in high speed operation of charge-pump PLL, the leakage current in loop filter, and a physical limit in charge-pump. With proposed model of charge-pump PLL, overload and stability are derived theoretically and the results are compared to the conventional model. Unlike the ideal charge-pump PLL that simplifies calculations, it is possible to analyze the transient-state and the steady-state at the same time with proposed accurate model. Thus, charge-pump over load, in the transient-state and the stead-state of charge-pump, is accuragely analyzed and the results are confirmed with simulation.

  • PDF

A Charge Pump with Improved Charge Transfer Capability and Relieved Bulk Forward Problem (전하 전달 능력 향상 및 벌크 forward 문제를 개선한 CMOS 전하 펌프)

  • Park, Ji-Hoon;Kim, Joung-Yeal;Kong, Bai-Sun;Jun, Young-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.4
    • /
    • pp.137-145
    • /
    • 2008
  • In this paper, novel CMOS charge pump having NMOS and PMOS transfer switches and a bulk-pumping circuit has been proposed. The NMOS and PMOS transfer switches allow the charge pump to improve the current-driving capability at the output. The bulk-pumping circuit effectively solves the bulk forward problem of the charge pump. To verify the effectiveness, the proposed charge pump was designed using a 80-nm CMOS process. The comparison results indicate that the proposed charge pump enhances the current-driving capability by more than 47% with pumping speed improved by 9%, as compared to conventional charge pumps having either NMOS or PMOS transfer switch. They also indicate that the charge pump reduces the worst-case forward bias of p-type bulk by more than 24%, effectively solving the forward current problem.

A Design of an Automatic Current Correcting Charge-Pump using Replica Charge Pump with Current Mismatch Detection (부정합 감지 복제 전하 펌프를 이용한 자동 전류 보상 전하 펌프의 설계)

  • Kim, Seong-Geun;Kim, Young-Shin;Pu, Young-Gun;Park, Joon-Sung;Hur, Jeong;Lee, Kang-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.2
    • /
    • pp.94-99
    • /
    • 2010
  • This paper presents a charge pump architecture for correcting the current mismatch due to the PVT variation. In general, the current mismatch of the charge pump should be minimized to improve the phase noise and spur performance of the PLL. In order to correct the current mismatch of the charge pump, the current difference is detected by the replica charge pump and fed back into the main charge pump. This scheme is very simple and guarantees the high accuracy compared with the prior works. Also, it shows a good dynamic performance because the mismatch is corrected continuously. It is implemented in 0.13um CMOS process and the die area is $100{\mu}m\;{\times}\;160{\mu}m$. The voltage swing is from 0.2V to 1V at supply voltage of 1.2V. The charging and discharging currents are $100{\mu}A$, respectively and the current mismatch due to the PVT variation is less than 1%.

A VPP Generator Design for a Low Voltage DRAM (저전압 DRAM용 VPP Generator 설계)

  • Kim, Tae-Hoon;Lee, Jae-Hyung;Ha, Pan-Bong;Kim, Young-Hee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.776-780
    • /
    • 2007
  • In this paper, the charge pump circuit of a VPP generator for a low voltage DRAM is newly proposed. The proposed charge pump is a 2-stage cross coupled charge pump circuit. The charge transfer efficiency is improved, and Distributed Clock Inverter is located in each charge pump stage to reduce clock period so that the pumping current is increased. In addition, the precharge circuit is located at Gate node of charge transfer transistor to solve the problem which is that the Gate node is maintained high voltage because the boosted charge can't discharge, so device reliability is decreased. The simulation result is that pumping current, pumping efficiency and power efficiency is improved. The layout of the proposed VPP generator is designed using $0.18{\mu}m$ Triple-Well process.

  • PDF

A Design of Charge Pump with Up/Down Current Mismatch Compensation for PHS Application (Up/Down Current Mismatch 보상 기능을 추가한 Charge Pump 회로의 설계)

  • Kim, Sang-Woo;Park, Joon-Sung;Ko, Dong-Hyun;Pu, Young-Gun;Lee, Kang-Yoon
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.472-473
    • /
    • 2008
  • This paper presents a charge pump used in frequency synthesizer for PHS application. The up/down current mismatch of charge pump has a critical effect on the phase noise and spur performance in frequency synthesizer. Therefore, the mismatch compensation scheme is proposed in this paper. And, the measurement results show that the mismatch can be reduced below 5 %.

  • PDF

Phase-Locked Loops using Digital Calibration Technique with counter (카운터 기반 디지털 보상 기법을 이용한 위상 고정 루프)

  • Jeong, Chan-Hui;Abdullah, Ammar;Lee, Kwan-Joo;Kim, Hoon-Ki;Kim, Soo-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.320-324
    • /
    • 2011
  • A digital technique is adopted to calibrate the current mismatch of the charge pump (CP) in phase-locked loops. A 2 GHz charge pump PLL (CPPLL) is used to justify the proposed calibration technique. The proposed digital calibration technique is implemented simply using a counter. The proposed calibration technique reduces the calibration time by up to a maximum of 50% compared other with techniques. Also by using a dual-mode CP, good current matching characteristics can be achieved to compensate $0.5{\mu}A$ current mismatch in CP. It was designed in a standard $0.13{\mu}m$ CMOS technology. The maximum calibration time is $33.6{\mu}s$ and the average power is 18.38mW with 1.5V power supply and effective area is $0.1804mm^2$.

Charge-Pump High Voltage Inverter for Plasma Backlight with Current Injection Method (CIM(Current Injection Method)을 이용한 Charge-Pump 방식의 Plasma Backlight용 고압 Inverter)

  • Jang, Jun-Ho;Kang, Shin-Ho;Lee, Jun-Young
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.381-383
    • /
    • 2007
  • Charge-pump high voltage inverter for Plasma backlight with CIM(Current Injection Method) is proposed in this paper. Adoption of ERC is a new attempt in high voltage inverter so that it is not only energy recovery but also improvement of discharge stability and system unstability which is interrupted by noise. Using a charge-pump technique enables low voltage switches to be usable, the cost can be reduce. CIM is adopted to achieve high speed energy recovery in proposed circuit. Operations of the proposed circuit are analyzed for each mode. The proposed circuit is verified to be applicable on a 32 inch plasma backlight panel by experimental results.

  • PDF

A Low-Jitter Phase-Locked Loop Based on a Charge Pump Using a Current-Bypass Technique

  • Moon, Yongsam
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.3
    • /
    • pp.331-338
    • /
    • 2014
  • A charge-pump circuit using a current-bypass technique, which suppresses charge sharing and reduces the sub-threshold currents, helps to decrease phase-locked loop (PLL) jitter without resorting to a feedback amplifier. The PLL shows no stability issues and no power-up problems, which may occur when a feedback amplifier is used. The PLL is implemented in 0.11-${\mu}m$ CMOS technology to achieve 0.856-ps RMS and 8.75-ps peak-to-peak jitter, which is almost independent of ambient temperature while consuming 4 mW from a 1.2-V supply.

High Performance Charge Pump Converter with Integrated CMOS Feedback Circuit

  • Jeong, Hye-Im;Park, Jung-Woong;Choi, Ho-Yong;Kim, Nam-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.3
    • /
    • pp.139-143
    • /
    • 2014
  • In this paper, an integrated low-voltage control circuit is introduced for a charge pump DC-DC boost converter. By exploiting the advantage of the integration of the feedback control circuit within CMOS technology, the charge pump boost converter offers a low-current operation with small ripple voltage. The error amplifier, comparator, and oscillator in the control circuit are designed with the supply voltage of 3.3 V and the operating frequency of 1.6~5.5 MHz. The charge pump converter with the 4 or 8 pump stages is measured in simulation. The test in the $0.35{\mu}m$ CMOS process shows that the load current and ripple ratio are controlled under 1 mA and 2% respectively. The output-voltage is obtained from 4.8 ~ 8.5 V with the supply voltage of 3.3 V.