• Title/Summary/Keyword: Characterization of phages

Search Result 23, Processing Time 0.024 seconds

Isolation and Characterization of Bacteriophages Infecting Ralstonia solanacearum from Potato Fields

  • Lee, Jihyun;Park, Tae-Ho
    • Research in Plant Disease
    • /
    • v.22 no.4
    • /
    • pp.236-242
    • /
    • 2016
  • Bacterial wilt caused by Ralstonia solanacearum is one of the most devastating diseases in major Solanaceae crops. The pathogen is easily disseminated and survives for many years in plant farming system. Although chemicals are applied to control the disease, they are of limited efficacy and cause several problems. Therefore, the use of phage therapy has been suggested to control the disease as a biological agent. In this study, we discovered bacteriophages lysing diverse Ralstonia isolates from plant and soil samples obtained from the potato cultivated field in Jeju. Three times repeated pickings of plaques resulted in obtaining 173 single phages showing diverse spectrum of host-specificity. With the results, 12 core phages were selected and dendrogram was generated. Genetic diversity of the selected phages was also confirmed by AFLP (Amplified Fragment of Length Polymorphism) fingerprinting. The stability of the phages was investigated in various temperatures and various conditions of pH in vitro. The phages were stable at $16^{\circ}C-44^{\circ}C$ and pH 6-10. Morphological characterization of the phages revealed they were all classified into the Podoviridae, but had diverse head sizes. The results of this research will contribute to control the disease and further researches regarding genetic and molecular aspects will facilitate understanding phage and bacteria interaction.

Recent Trends in Salmonella Outbreaks and Emerging Technology for Biocontrol of Salmonella Using Phages in Foods: A Review

  • Oh, Jun-Hyun;Park, Mi-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.12
    • /
    • pp.2075-2088
    • /
    • 2017
  • Salmonella is one of the principal causes of foodborne outbreaks. As traditional control methods have shown less efficacy against emerging Salmonella serotypes or antimicrobial-resistant Salmonella, new approaches have been attempted. The use of lytic phages for the biocontrol of Salmonella in the food industry has become an attractive method owing to the many advantages offered by the use of phages as biocontrol agents. Phages are natural alternatives to traditional antimicrobial agents; they have proven effective in the control of bacterial pathogens in the food industry, which has led to the development of different phage products. The treatment with specific phages in the food industry can prevent the decay of products and the spread of bacterial diseases, and ultimately promotes safe environments for animal and plant food production, processing, and handling. After an extensive investigation of the current literature, this review focuses predominantly on the efficacy of phages for the successful control of Salmonella spp. in foods. This review also addresses the current knowledge on the pathogenic characteristics of Salmonella, the prevalence of emerging Salmonella outbreaks, the isolation and characterization of Salmonella-specific phages, the effectiveness of Salmonella-specific phages as biocontrol agents, and the prospective use of Salmonella-specific phages in the food industry.

Classification and Characterization of Bacteriophages of Lectobacillus casei (Lactobacillus casei Bacperiophage의 분류 및 특성에 관한 연구)

  • 김영창;박민철;강국희;윤영호;이광웅
    • Korean Journal of Microbiology
    • /
    • v.17 no.4
    • /
    • pp.165-178
    • /
    • 1979
  • Phages of Lactobaciilus casei (PLC) isolated from plant drainage were classified and characterized. The results are as follows : 1. On the basis of host range pattern, phages could be divided into 2 groups (PLC-B and PLC-C). PLC-B group phages could be further divided into 5 sub-groups $(B_1, \;B_2, \;B_3, \;B_4, \;and\;B_5)$. Although PLC-C group phages had the same host range, they could be also divided into 2 sub-groups $(C_1\;and\;C_2)$ by morphlogical type. 2. It was $B_3$ group phages that represented a major proportion (44.4%) of phages tested. However, $B_1$ group phages were shown to have the widest host range. 3. Electron micrographs revealed that the phages fell into three different morphological types. $(B_1, \;B_2, \;and\;B_3)$ group phages hd a hexagonal head (52nm in diameter) and a sheathless noncontractile (245 nm in length). $B_4\;and\;C_2$ group phages had a hexagonal head (56 nm) and a short flexible tail (169nm) having no sheath. $B_5\;and\;C_1$ group phages were shown to have a hexagonal head (81 nm) and a contractile tail (140 nm) having a sheath, a base plate and tail fibers. 4. The inactivation of the phages by antisera indicated that serological relationships correlated completely with morphological types. 5. $B_1, \;C_1\;and\;C_2$ group phages produced a large (1, 2 mm in diameter) plaque with a clear ring. The morphology of plaques of $B_3\;and\;B_5$ group phages was the same as those produced by the above, but the average plaque sizes for $B_3\;and\;B_5$ were 0.8 mm abd 0.5 mm, respectively. $B_2\;and\;B_4$ group phages produced a small (0.5 mm) turbid plaque with an irregular edge. 6. The latent period and the average burst size of $B_1\;and\;B_3$ group phages were 90 min and 100, respectively. These phages reuqired calcium ions for their miltiplication. 7. $B_3$ group phages could not be absrobed to R-variant $KC_1$. 8. The order of resistance of phages to heat was $B_2\;>\;B_1, B_4\;and\;B_5\;>\;B_3\;and\;C_2, \;B_5$ group phages were more stable than $B_3$ in various pH values. $C_2$ group phages were more sensitive to UV irradiation than $B_1\;and\;B_3$ group phages. 9. Strains YIT9018 and IAM 1043 were induced by mitomycin C treatment. Phage particles detected in the lysates had a hexagonal head (38 and 49 nm, respectively), but no tail. Any sensitive indicator strain could not be isolated in spite of repaeated trials.

  • PDF

First Isolation and Molecular Characterization of Bacteriophages Infecting Acidovorax citrulli, the Causal Agent of Bacterial Fruit Blotch

  • Rahimi-Midani, Aryan;Lee, Yong Seok;Kang, Se-Won;Kim, Mi-Kyeong;Choi, Tae-Jin
    • The Plant Pathology Journal
    • /
    • v.34 no.1
    • /
    • pp.59-64
    • /
    • 2018
  • Bacteriophages of Acidovorax citrulli, the causal agent of bacterial fruit blotch, were isolated from 39 watermelon, pumpkin, and cucumber leaf samples collected from various regions of Korea and tested against 18 A. citrulli strains. Among the six phages isolated, ACP17 forms the largest plaque, and exhibits the morphology of phages in the Myoviridae family with a head diameter of $100{\pm}5nm$ and tail length of $150{\pm}5nm$. ACP17 has eclipse and latent periods of $25{\pm}5min$ and $50{\pm}5min$, respectively, and a burst size of 120. The genome of ACP17 is 156,281 base pairs with a G + C content of 58.7%, 263 open reading frames, and 4 transfer RNA genes. Blast search and phylogenetic analysis of the major capsid protein showed that ACP17 has limited homology to two Stentrophomonas phages, suggesting that ACP17 is a new type of Myoviridae isolated from A. citrulli.

Isolation and Characterization of Temperate Phages in Enterococcus faecium from Sprouts (새싹채소 유래 Enterococcus faecium으로부터 Temperate Phage의 분리와 특성)

  • Lee, Young-Duck;Park, Jong-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.3
    • /
    • pp.323-327
    • /
    • 2014
  • To analyze the characteristics of bacteriophages in Enterococcus faecium, D-19 and F6 phages were induced from five E. faecium isolated from sprouts by the treatment with mitomycin C. The bacteriophages of D-19 and F-6 had long, non-contractile tails and icosahedral heads, and were members of Siphoviridae family. As the host spectrum, D-19 phage lysed five out of 55 strains of E. faecium, whereas F6 phage lysed only three strains. Both D-19 and F6 phages displayed similar and high stabilities against ethanol and pH capable of resisting the exposure to 100% ethanol and pH 4.

Characterization of Phage-Resistant Strains Derived from Pseudomonas tolaasii 6264, which Causes Brown Blotch Disease

  • Yun, Yeong-Bae;Han, Ji-Hye;Kim, Young-Kee
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.12
    • /
    • pp.2064-2070
    • /
    • 2018
  • Pseudomonas tolaasii 6264 is a representative strain that causes bacterial blotch disease on the cultivated oyster mushroom, Pleurotus ostreatus. Bacteriophages are able to sterilize the pathogenic P. tolaasii strains, and therefore, they can be applied in creating disease-free mushroom cultivation farms, through a method known as "phage therapy". For successful phage therapy, the characterization of phage-resistant strains is necessary, since they are frequently induced from the original pathogenic bacteria in the presence of phages. When 10 different phages were incubated with P. tolaasii 6264, their corresponding phage-resistant strains were obtained. In this study, changes in pathogenic, genetic, and biochemical characteristics as well as the acquired phage resistance of these strains were investigated. In the phylogenetic analyses, all phage-resistant strains were identical to the original parent strain based on the sequence comparison of 16S rRNA genes. When various phage-resistant strains were examined by three different methods, pitting test, white line test, and hemolytic activity, they were divided into three groups: strains showing all positive results in three tests, two positive in the first two tests, and all negative. Nevertheless, all phage-resistant strains showed that their pathogenic activities were reduced or completely lost.

Characterization of Phage Behaviors Against Antibiotic-Resistant Salmonella Typhimurium

  • Easwaran, Maheswaran;Ahn, Juhee
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.6
    • /
    • pp.602-606
    • /
    • 2020
  • This study was designed to investigate the dynamic behaviors of phages against Salmonella enterica subsp. enterica serovar Typhimurium ATCC 19585 (STWT), S. Typhimurium KCCM 40253 (STKCCM), ciprofloxacin-induced S. Typhimurium ATCC 19585 strains (STCIP), and S. Typhimurium CCARM 8009 (STCCARM). Phages, including PBST-10, PBST-13, PBST-32, PBST-35, P-22, and P-22 B1 had narrow host ranges. The adsorption rates of all phages ranged from 47 to 85%, 58 to 95%, and 61 to 93%, respectively, against STWT, STKCCM, and STCIP, while the lowest adsorption rates ranged from 14 to 36% against STCCARM. The phage burst sizes were from 43 to 350, 37 to 530, 66 to 500, and 24 to 500 plaque-forming units (PFUs) per infected STWT, STKCCM, STCIP, and STCCARM, respectively. The STCIP strain was effectively inhibited by all phages at the early of incubation period. These results provide useful information for better understanding the phage behaviors against antibiotic-resistant and antibiotic-sensitive pathogens.

Physiological characterization of SP816 bacteriophage (SP816 박테리오파아지의 생리적 특성)

  • 이오형
    • Korean Journal of Microbiology
    • /
    • v.24 no.2
    • /
    • pp.161-167
    • /
    • 1986
  • Some of the physiological properties of Sp816 bacteriophage of Bacillus subtilis SNU816 were characterized. It could form plaques on either B. subtilis SNU816 or B. natto 8102, but not on any other bacillus strains investrgated. Its plaque morphology was circular with a diameter of less than 1.0mm and had a narrow halo surrounding the clear center. Its latent period was 34-36 min and had a burst size of 547. It was most stable at pH 6.0, and rapidly inactivated at $60^{\circ}C$ with a initial deaty rate of -0.216 $min^{-1}$. Host range, thermal inactivation rate at $60^{\circ}C$, pH stability, and UV sensitivity revealed that SP816 was quite different from any other phages investigated together but seemed to be rather related to B. natto phages.

  • PDF

Isolation and Characterization of Listeria phages for Control of Growth of Listeria monocytogenes in Milk

  • Lee, Sunhee;Kim, Min Gon;Lee, Hee Soo;Heo, Sunhak;Kwon, Mirae;Kim, GeunBae
    • Food Science of Animal Resources
    • /
    • v.37 no.2
    • /
    • pp.320-328
    • /
    • 2017
  • In this study, two Listeria bacteriophages, LMP1 and LMP7, were isolated from chicken feces as a means of biocontrol of L. monocytogenes. Both bacteriophages had a lytic effect on L. monocytogenes ATCC 7644, 15313, 19114, and 19115. Phages LMP1 and LMP7 were able to inhibit the growth of L. monocytogenes ATCC 7644 and 19114 in tryptic soy broth at $10^{\circ}C$ and $30^{\circ}C$. Nevertheless, LMP1 was more effective than LMP7 at inhibiting L. monocytogenes ATCC 19114. On the contrary, LMP7 was more effective than LMP1 at inhibiting L. monocytogenes ATCC 7644. The morphology of LMP1 and LMP7 resembled that of members of the Siphoviridae family. The growth of L. monocytogenes ATCC 7644 was inhibited by both LMP1 and LMP7 in milk; however, the growth of L. monocytogenes ATCC 19114 was only inhibited by LMP1 at $30^{\circ}C$. The lytic activity of bacteriophages was also evaluated at $4^{\circ}C$ in milk in order to investigate the potential use of these phages in refrigerated products. In conclusion, these two bacteriophages exhibit different host specificities and characteristics, suggesting that they can be used as a component of a phage cocktail to control L. monocytogenes in the food industry.

Characterization of a Phage Library Displaying Random 22mer Peptides

  • Lee, Seung-Joo;Lee, Jeong-Hwan;Kay, Brian K.;Dreyfuss, Gideon;Park, Yong-Keun;Kim, Jeong-Kook
    • Journal of Microbiology
    • /
    • v.35 no.4
    • /
    • pp.347-353
    • /
    • 1997
  • We have characterized a phage library displaying random 22mer peptides which were produced as N-terminal fusions to the pIII coat protein of M13 filamentous phages. Among the sixty phages randomly picked from the library, 25 phages had the 22mer peptide inserts. The DNA sequence analysis of the 25 inserts showed the following results: first, each nucleotide was represented almost equally at each codon position except that there were some biases toward G bases at the first position of the codons. Secondly, the expected 47 sense codons were represented. The deduced amino acid sequences of the 25 inserts were analyzed to examine its diversity. Glycine and glutamate were the two most overrepresented residues above the expected value, whereas cysteine and threonine residues were underrepresented. The range of dicersity in dipeptide sequences showed that the amino acid residues were randomly distributed along the peptide insert. Acidic, basic, polar, and nonpolar amino acid residues were represented to the extent expected at most positions of the peptide inserts. The predicted isoelectric points and hydropathy indices of the 25 peptides showed that a variety of the peptide were represented in the library. These results indicate that this phage display library could be useful in fiuding ligands for a broad spectrum of receptors by affinity screening.

  • PDF