References
- Albino, L. A., Rostagno, M. H., Hungaro, H. M., and Mendonca, R. C. (2014) Isolation, characterization, and application of bacteriophages for Salmonella spp. biocontrol in pigs. Foodborne Pathog. Dis. 11, 602-609. https://doi.org/10.1089/fpd.2013.1600
- Carlton, R. M., Noordman, W. H., Biswas, B., de Meester, E. D., and Loessner, M. J. (2005) Bacteriophage P100 for control of Listeria monocytogenes in foods: genome sequence, bioinformatic analyses, oral toxicity study, and application. Regul. Toxicol. Pharmacol. 43, 301-312. https://doi.org/10.1016/j.yrtph.2005.08.005
- Cartwright, E. J., Jackson, K. A., Johnson, S. D., Graves, L. M., Silk, B. J., and Mahon, B. E. (2013) Listeriosis outbreaks and associated food vehicles, United States, 1998-2008. Emerg. Infect. Dis. 19, 1-9. https://doi.org/10.3201/eid1901.120393
- Carvalho, C., Susano, M., Fernandes, E., Santos, S., Gannon, B., Nicolau, A., Gibbs, P., Teixeira, P., and Azeredo, J. (2010) Method for bacteriophage isolation against target Campylobacter strains. Lett. Appl. Microbiol. 50, 192-197. https://doi.org/10.1111/j.1472-765X.2009.02774.x
- Coffey, B., Mills, S., Coffey, A., McAuliffe, O., and Ross, R. P. (2010) Phage and their lysins as biocontrol agents for food safety applications. Ann. Rev. Food Sci. Technol. 1, 449-468. https://doi.org/10.1146/annurev.food.102308.124046
- Denes, T., Vongkamjan, K., Ackermann, H. W., Moreno Switt, A. I., Wiedmann, M., and den Bakker, H. C. (2014) Comparative genomic and morphological analyses of Listeria phages isolated from farm environments. Appl. Environ. Microbiol. 80, 4616-4625. https://doi.org/10.1128/AEM.00720-14
- Dorscht, J., Klumpp, J., Bielmann, R., Schmelcher, M., Born, Y., Zimmer, M., Calendar, R., and Loessner, M. J. (2009) Comparative genome analysis of Listeria bacteriophages reveals extensive mosaicism, programmed translational frameshifting, and a novel prophage insertion site. J. Bacteriol. 191, 7206-7215. https://doi.org/10.1128/JB.01041-09
- Eugster, M. R., Haug, M. C., Huwiler, S. G., and Loessner, M. J. (2011) The cell wall binding domain of Listeria bacteriophage endolysin PlyP35 recognizes terminal GlcNAc residues in cell wall teichoic acid. Mol. Microbiol. 81, 1419-1432. https://doi.org/10.1111/j.1365-2958.2011.07774.x
- Farber, J. M. and Peterkin, P. I. (1991) Listeria monocytogenes, a food-borne pathogen. Microbiol. Rev. 55, 476-511.
- Ferreira, V., Wiedmann,M., Teixeira, P., and Stasiewicz, M. J. (2014) Listeria monocytogenes persistence in food-associated environments: Epidemiology, strain characteristics, and implications for public health. J. Food Prot. 77, 150-170. https://doi.org/10.4315/0362-028X.JFP-13-150
- Fister, S., Robben, C., Witte, A. K., Schoder, D., Wagner, A., and Rossmanith, P. (2016) Influence of environmental factors on phage-bacteria interaction and on the efficacy and infectivity of phage P100. Front. Microbiol. 7: 1152.
- Garrido, V., Vitas, A. I., and Garcia-Jalon, I. (2010) The problem of listeriosis and ready-to-eat products: Prevalence and persistence. In: Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology. Menendez-Vilas, A. (ed), Formatex, Badajoz, Spain, pp. 1182-1189.
- Gill, J. J., Sabour, P. M., Leslie, K. E., and Griffiths, M. W. (2006) Bovine whey proteins inhibit the interaction of Staphylococcus aureus and bacteriophage K. J. Appl. Microbiol. 101, 377-386. https://doi.org/10.1111/j.1365-2672.2006.02918.x
- Goulet, V., Hedberg, C., LeMonnier, A., and de Valk, H. (2008) Increasing incidence of listeriosis in France and other European countries. Emerg. Infect. Dis. 14, 734-740. https://doi.org/10.3201/eid1405.071395
- Hagens, S. and Loessner, M. J. (2007) Application of bacteriophages for detection and control of foodborne pathogens. Appl. Microbiol. Biotechnol. 76, 513-519. https://doi.org/10.1007/s00253-007-1031-8
- Hagens, S. and Loessner, M. J. (2010) Bacteriophage for biocontrol of foodborne pathogens: Calculations and considerations. Curr. Pharm. Biotechnol. 11, 58-68. https://doi.org/10.2174/138920110790725429
- Hagens, S. and Loessner, M. J. (2014) Phages of Listeria offer novel tools for diagnostics and biocontrol. Front Microbiol. 5, 159.
- Hagens, S. and Offerhaus, M. L. (2008) Bacteriophages - new weapons for food safety. Food Technol. 62, 46-54.
- Janez, N. and Loc-Carrillo, C. (2013) Use of phages to control Campylobacter spp. J. Microbiol. Method. 95, 68-75. https://doi.org/10.1016/j.mimet.2013.06.024
- Jassim, S. A. A. and Limoges, R. G. (2014) Natural solution to antibiotic resistance: bacteriophages 'The Living Drugs'. World J. Microbiol. Biotechnol. 30, 2153-2170. https://doi.org/10.1007/s11274-014-1655-7
- Klumpp, J., Dorscht, J., Lurz, R., Bielmann, R., Wieland, M., Zimmer, M., Calendar, R., and Loessner, M. J. (2008) The terminally redundant, nonpermuted genome of Listeria bacteriophage A511: A model for the SPO1-like myoviruses of grampositive bacteria. J. Bacteriol. 190, 5753-5765. https://doi.org/10.1128/JB.00461-08
- Klumpp J. and Loessner M. J. (2013) Listeria phages: Genomics, evolution, and application. Bacteriophage. 3, e26861. https://doi.org/10.4161/bact.26861
- Meloni, D., Consolati, S. G., Mazza, R., Mureddu, A., Fois, F., Piras, F., and Mazzette, R. (2014) Presence and molecular characterization of the major serovars of Listeria monocytogenes in ten Sardinian fermented sausage processing plants. Meat Sci. 97, 443-450. https://doi.org/10.1016/j.meatsci.2014.02.012
- Ortiz, S., Lopez, V., and Martínez-Suarez, J. V. (2014) Control of Listeria monocytogenes contamination in an Iberian pork processing plant and selection of benzalkonium chlorideresistant strains. Food Microbiol. 39, 81-88. https://doi.org/10.1016/j.fm.2013.11.007
- Rodriguez-Rubio, L., García, P., Rodriguez, A., Billington, C., Hudson, J. A., and Martinez, B. (2015) Listeria phages and coagulin C23 act synergistically to kill Listeria monocytogenes in milk under refrigeration conditions. Int. J. Food Microbiol. 205, 68-72. https://doi.org/10.1016/j.ijfoodmicro.2015.04.007
- Salama, S., Bolton, F. J., and Hutchinson, D. N. (1989) Improved method for the isolation of Campylobacter jejuni and Campylobacter coli bacteriophages. Lett. Appl. Microbiol. 8, 5-7. https://doi.org/10.1111/j.1472-765X.1989.tb00211.x
- Schmelcher, M. and Loessner, M. J. (2014) Application of bacteriophages for detection of foodborne pathogens. Bacteriophage. 4, e28137. https://doi.org/10.4161/bact.28137
- Sulakvelidze, A. (2013) Using lytic bacteriophages to eliminate or significantly reduce contamination of food by foodborne bacterial pathogens. J. Sci. Food Agric. 93, 3137-3146. https://doi.org/10.1002/jsfa.6222
- Vazquez-Boland, J. A., Kuhn, M., Berche, P., Chakraborty, T., Dominguez-Bernal, G., Goebel, W., Gonzalez-Zorn, B., Wehland, J. and Kreft, J. (2001) Listeria pathogenesis and molecular virulence determinants. Clin. Microbiol. Rev. 14, 584-640. https://doi.org/10.1128/CMR.14.3.584-640.2001
- Zinno, P., Devirgiliis, C., Ercolini, D., Ongeng, D., and Mauriello, G. (2014) Bacteriophage P22 to challenge Salmonella in foods. Int. J. Food Microbiol. 191, 69-74. https://doi.org/10.1016/j.ijfoodmicro.2014.08.037
Cited by
- from the Napahai plateau wetland vol.64, pp.3, 2018, https://doi.org/10.1139/cjm-2017-0572
- Bacteriophage control of Salmonella Typhimurium in milk pp.2092-6456, 2019, https://doi.org/10.1007/s10068-018-0446-6
- Production of Bacteriophages by Listeria Cells Entrapped in Organic Polymers vol.10, pp.6, 2018, https://doi.org/10.3390/v10060324
- Listeria monocytogenes in the Food Processing Environment vol.5, pp.2, 2018, https://doi.org/10.1007/s40588-018-0090-1
- Role of Bacteriophages in the Implementation of a Sustainable Dairy Chain vol.10, pp.1664-302X, 2019, https://doi.org/10.3389/fmicb.2019.00012
- Development of Kinetic Models and Their Applications to Describe the Resistance of Listeria monocytogenes in Napa Cabbage Kimchi to Fermentation Conditions vol.26, pp.1, 2017, https://doi.org/10.3136/fstr.26.53
- Isolation and Characterization of Listeria monocytogenes Phage vB_LmoH_P61, a Phage With Biocontrol Potential on Different Food Matrices vol.4, pp.None, 2017, https://doi.org/10.3389/fsufs.2020.521645
- Bacteriophage biocontrol to fight Listeria outbreaks in seafood vol.145, pp.None, 2017, https://doi.org/10.1016/j.fct.2020.111682
- Effectiveness of Phage-Based Inhibition of Listeria monocytogenes in Food Products and Food Processing Environments vol.8, pp.11, 2017, https://doi.org/10.3390/microorganisms8111764
- Combatting intracellular pathogens using bacteriophage delivery vol.47, pp.4, 2017, https://doi.org/10.1080/1040841x.2021.1902266
- Dynamic model to describe kinetic behavior of Listeria monocytogenes in smoked salmon vol.41, pp.5, 2017, https://doi.org/10.1111/jfs.12925