• Title/Summary/Keyword: Chaotic Behavior

Search Result 125, Processing Time 0.027 seconds

Chaotic Behavior Phenomena in Love Model with External Environment considering Colored Noise (외부 환경을 가진 사랑 모델에서 컬러 잡음을 고려한 카오스 거동 현상)

  • Shon, Young-Woo;Bae, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.2
    • /
    • pp.343-348
    • /
    • 2020
  • During 50 years, the chaotic theory has begun to research with concerning in Mathematics and physics, and it has extended the fields to of engineering and social science. Recently, chaotic theory has progressed as a type of fusion research fused with natural science and social science. Such fused research includes problems for addiction, happiness of human, problem happened between family and love affairs between man and woman. In this paper, we consider the external environment based on love model which is one among fusion research, and when we consider colored noise in the external environment, we verify how the chaotic pattern is affected in the love model through time series and phase portrait.

Numerical investigation on multi-degree-freedom nonlinear chaotic vibration isolation

  • Jiang, Guoping;Tao, Weijun
    • Structural Engineering and Mechanics
    • /
    • v.51 no.4
    • /
    • pp.643-650
    • /
    • 2014
  • A chaotic vibration isolation system is designed according to the chaotic vibration theory in this paper. The strong nonlinearity is generated by the system. Line spectra in the radiated noise maybe easily detected caused by marine vessels. It is Important to reduce the line spectra by improving the acoustic stealth of marine vessels. A multi-degree-freedom (MDF) nonlinear vibration isolation system (NVIS) system is setup by the experiment and finite element method. The model is established with finite element method. The results show that the behavior of the device gradually varies from period bifurcation into chaotic state and the line spectrum is changed from single spectral structure into broadband spectral structure. It is concluded that chaotic vibration isolation is preferable contrasted on line spectra isolation.

Temperature Analysis of the Voltage Contolled Chaotic Circuit (전압 제어형 카오스회로의 온도특성 해석)

  • Park, Yongsu;Zhou, Jichao;Song, Hanjung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.8
    • /
    • pp.3976-3982
    • /
    • 2013
  • This paper presents a temperature analysis of the chaotic behavior in the voltage controlled CMOS chaotic circuit. The circuit is based on a simple nonlinear function block which is needed for chaotic signal generation. It consists of a NFB (nonlinear function block), a level shifter and non-overlapping two-phase clock for sample and hold. By SPICE simulation, chaotic dynamics such as frequency spectra and bifurcations according to the temperature variations were analyzed. And, it was showed that the circuit can generate discrete chaotic signals within control voltage in the range from 1.2 V to 2.3 V in a specific temperature condition of $25^{\circ}C$.

Chaos in nonlinear control systems

  • Lee, Joon-Suh;Chang, Kun-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.758-762
    • /
    • 1994
  • Complicated dynamical behavior can occur in model reference adaptive control systems when two external sinusoidal signals are introduced although the plant and reference model are stable linear first older systems. The phase portrait plot and the power spectral analysis indicate chaotic behavior. In the system treated, a positive Lyapuniov exponent and non-integer dimension clearly manifest chaotic nature of the system.

  • PDF

Swimming Characteristics of the Black Porgy Acanthopagrus schlegeli in the Towing Cod-End of a Trawl

  • Kim Yong-Hae;Jang Chi Yeong
    • Fisheries and Aquatic Sciences
    • /
    • v.8 no.3
    • /
    • pp.177-181
    • /
    • 2005
  • Fishing selectivity is determined by the level of voluntary escaping behavior in accordance with decision-making based on the relationship between fish size and mesh size. This study examined movement during the swimming behavior of black porgy in a trawl's towing cod-end and analyzed the movement components such as swimming speed, angular velocity of turning, and distance to the net over time. Most of the observed fish exhibited an optomotor response, maintaining position and swimming speed without changing direction. Others exhibited erratic or 'panic' behavior with sudden changes in swimming speed and direction. The latter behavior involved very irregular and aperiodic variations in swimming speed and angular velocity, termed 'chaotic behavior.' Thus, the results of this study can be applied to a chaotic behavior model as a time series of swimming movements in the towing cod-end for the fishing selectivity.

Robustness of Data Mining Tools under Varting Levels of Noise:Case Study in Predicting a Chaotic Process

  • Kim, Steven H.;Lee, Churl-Min;Oh, Heung-Sik
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.23 no.1
    • /
    • pp.109-141
    • /
    • 1998
  • Many processes in the industrial realm exhibit sstochastic and nonlinear behavior. Consequently, an intelligent system must be able to nonlinear production processes as well as probabilistic phenomena. In order for a knowledge based system to control a manufacturing processes as well as probabilistic phenomena. In order for a knowledge based system to control manufacturing process, an important capability is that of prediction : forecasting the future trajectory of a process as well as the consequences of the control action. This paper examines the robustness of data mining tools under varying levels of noise while predicting nonlinear processes, includinb chaotic behavior. The evaluated models include the perceptron neural network using backpropagation (BPN), the recurrent neural network (RNN) and case based reasoning (CBR). The concepts are crystallized through a case study in predicting a chaotic process in the presence of various patterns of noise.

  • PDF

Design of Optimal Sampled-Data Controller for Continuous-Time Chatoic Systems

  • Park, Kwang-Sung;Park, Jin-Bae;Park, Yoon-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.38.5-38
    • /
    • 2001
  • In this paper, we propose new digital optimal control approach for controlling continuous-time nonlinear chaotic systems, which show very complex behavior and cannot be easily controlled by conventional control methods. Most real systems are represented as continuous-time system, whereas some control methods should be implemented under the condition of computer-based platforms, which are discrete-time systems. To achieve the control objective for chaotic systems successfully, the sampled-data controller, which considers the inter-sample behavior of the continuous-time systems effectively, should be needed. The proposed optimal controller is designed based on the linearized estimation model of chaotic systems. By the computer simulation, we show the control ...

  • PDF

Analysis of Chaotic Behavior in Fractional Duffing Equation (Fractional Duffing 방정식에서의 카오스 거동 해석)

  • Bae, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.12
    • /
    • pp.1389-1394
    • /
    • 2015
  • Recently many effort appears applying the concept of fractional calculus that can be represented by fractional differential equation in the control engineering, physics and mathematics. This paper describes the fractional order with real order for Duffing equation which can be represented by integer order. This paper also confirms the existence of chaotic behaviors by using time series and phase portrait with varying the parameter of real order.

Computations of the Lyapunov exponents from time series

  • Kim, Dong-Seok;Park, Eun-Young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.3
    • /
    • pp.595-604
    • /
    • 2012
  • In this article, we consider chaotic behavior happened in nonsmooth dynamical systems. To quantify such a behavior, a computation of Lyapunov exponents for chaotic orbits of a given nonsmooth dynamical system is focused. The Lyapunov exponent is a very important concept in chaotic theory, because this quantity measures the sensitive dependence on initial conditions in dynamical systems. Therefore, Lyapunov exponents can decide whether an orbit is chaos or not. To measure the sensitive dependence on initial conditions for nonsmooth dynamical systems, the calculation of Lyapunov exponent plays a key role, but in a theoretical point of view or based on the definition of Lyapunov exponents, Lyapunov exponents of nonsmooth orbit could not be calculated easily, because the Jacobian derivative at some point in the orbit may not exists. We use an algorithmic calculation method for computing Lyapunov exponents using time series for a two dimensional piecewise smooth dynamic system.

Modeling the Selectivity of the Cod-end of a Trawl Using Chaotic Fish Behavior and Neural Networks

  • Kim, Yong-Hae;Wardle, Clement S.
    • Fisheries and Aquatic Sciences
    • /
    • v.11 no.1
    • /
    • pp.61-69
    • /
    • 2008
  • Using empirical data of fish performance and physiological limits as well as physical stimuli and environmental data, a cod-end selectivity model based on a chaotic behavior model using the psycho-hydraulic wheel and neural-network approach was established to predict fish escape or herding responses in trawl and cod-end designs. Fish responses in the cod-end were categorized as escape or herding reactions based on their relative positions and reactions to the net wall. Fish movements were regulated by three factors: escape time, a visual looming effect, and an index of body girth-mesh size. The model was applied to haddock in a North Sea bottom trawl including frequencies of movement components, swimming speed, angular velocity, distance to net wall, and the caught-fish ratio; simulation results were similar to field observations. The ratio of retained fish in the cod-end was limited to 37-95% by optomotor coefficient values of 0.3-1.0 and to 13-67% by looming coefficient values of 0.1-1.0. The selectivity curves generated by this model were sensitive to changes in mesh size, towing speed, mesh type, and mesh shape.