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Robustness of Data Mining Tools under
Varying Levels of Noise :
Case Study in Predicting a Chaotic Process

Steven H. Kim* - Churlmin Lee* - Heungsik Oh*

Abstract

Many processes in the industrial realm exhibit stochastic and nonlinear behavior. Consequently, an
intelligent system must be able to adapt to nonlinear production processes as well as probabilistic
phenomena. In order for a knowledge based system to control a manufacturing process. an important
capability is that of prediction: forecasting the future trajectory of a process as well as the consequences
of the control action. This paper examines the robustness of data mining tools under varying levels of
noise while predicting nonlinear processes, including chaotic behavior. The evaluated models include the
perceptron neural network using backpropagation (BPN), the recurrent neural network (RNN) and case

based reasoning (CBR). The concepts are crystallized through a case study in predicting a chaotic process

in the presence of various patterns of noise.
1. Introduction

Recent years have witnessed a growing recognition of the need to develop intelligent
manufacturing systems which can improve their performance through experience. Moreover, such
systems should be competent in dealing not only with simple processes such as linear
input-output functions, but stochastic and nonlinear behavior.

To this end, an intelligent manufacturing system may draw on techniques from disparate
fields, involving knowledge in both explicit and implicit forms. An example of explicit knowledge

is a set of rules or procedures, while an example of implicit know-how lies with neural networks.
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In order for a knowledge based system to control a manufacturing process. an important
capability is that of prediction: forecasting the future trajectory of a process as well as the
consequences of the control action. This paper presents a study of robustness of data mining
tools under varying levels of noise to predict nonlinear processes, including chaotic behavior. The
evaluated models include perceptron neural networks using backpropagation (BPN). recurrent
neural network (RNN) and case based reasoning (CBR). The concepts are crystallized through a

case study in predicting a chaotic process.

MOTIVATION

Manufacturing systems operate in complex environments. The complexity arises from novelty,
nonlinearities, and the multitude of interactions which arise when attempting to control various
activities. In such a milieu, important process variables can remain unidentified. Even when they
are identified, their interactions may remain uncertain. This complexity and the uncertainties
which are often its derivatives limit the effectiveness of traditional control methods.

Fortunately, this situation can be remedied by an adaptive control methodology using
knowledge integration [17]. The integration involves a judicious mixture of model based
reasoning, information sharing, and case based reasoning. Over the past decade, a popular
methodology for implementing adaptive systems has lain in the neural network. Despite its many
advantages such as autonomous learning in specific contexts, the neural approach has its
limitations. Among the limitations are the slow rates of learning and perhaps even more
importantly, the implicit nature of the learned skill. More specifically, a neural network may
yield the correct response to a query but it cannot explain the result or justify its “reasoning’.

In contrast, the use of explicit knowledge allows for explanation and justification for the
benefit of other entities, including an interested human observer. Examples of such high-level
representation, also called the knowledge level. lies with declarative logic or production rules. A
sophisticated learning system should provide for a fusion of both implicit and explicit methods of
knowledge representation. In this way, it can build on the respective advantages of disparate

techniques.



F23% HIW Robustness of Data Mining Tools under Varying Levels of Noise-- 111

METHODOLOGY

An adaptive system should have the ability to accommodate a diversity of adaptive techniques
among its component subsystems. In the area of production supervision, existing programs largely
address the regulation of simple tasks. To illustrate, software packages fdr system regulation rely
on classical methods of control: these methods model each component of the associated plant in
simplified fashion, as linearizable or other elementary functions. In real systems, however, the
components tend to be highly nonlinear: examples of nonlinearities are found in the step
functions of static friction, the cycles of hysteresis, or the gaps of dead zones. Moreover, the
plant is often poorly understood and therefore inadequately modeled.

All these limitations can be addressed by advanced methods of knowledge representation and
manipulation. To illustrate, nonlinear plant dynamics can be modeled by arbitrary functions in
the form of callable procedures. Moreover, poorly modeled plants can be handled by learning
systems. By building on their experience, such adaptive systems can build enhanced models -
whether explicit or implicit - of the plant and thereby improve system performance over time.

These capabilities can be further enhanced by incorporating complementary techniques. An
example in this category lies in the use of predictive statistics. For instance, drift in the depth of
cut of a milling machine can be estimated by regression on the data stream from previous
operations. Any discernible drift can then be compensated for in the control system: or the
endogenous plant could be reconfigured: or a human supervisor might be notified of an
impending problem.

Neural Network. Neural networks are learning systems characterized by robustness and
graceful degradation. The most common type of neural network and training procedure takes the
form of backpropagation (BPN). A backpropagation neural network with standard connections
responds to a given input pattern with exactly the same output pattern every time the input
pattern is presented. A recurrent neural network (RNN) may respond to the same input pattern
differently at different times, depending upon the patterns that have been presented as inputs in
the past.

However, a key limitation of neural nets lies in the excessively long training periods.
Thousands of trials are often required for satisfactory performance in various tasks. The time
and effort required for training have hindered their widespread application to many practical
domains.

Case Based Reasoning. A learning system should make increasingly useful decisions as it
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accumulates experience. This is the express goal of the work in case-based reasoning (CBR).

The CBR methodology can be effective even if the knowledge base is imperfect. Certain
techniques of automated learning, such as explanation-based learning, work well only if a strong
domain theory exists. In contrast. CBR can use many examples to overcome the gaps in a weak
domain theory while still taking advantage of the domain theory [24]. CBR can also be used
when the descriptions of the cases. as well as the domain theory, are incomplete [28]. A further
advantage of CBR is the relative ease of combining techniques with other approaches. An
example of such compatibility is a system which uses case reasoning to solve problems whenever
possible: otherwise it resorts to heuristics to decompose a problem into a simpler one [211.

Perhaps the main limitation of CBR is its susceptibility to the misinterpretation of the
knowledge in its case base. This is a perennial hazard in any field of endeavor. automated or
otherwise. One way to address the problem in CBR is to encode deeper-level domain knowledge

in addition to the surface features of various cases.

CASE STUDY

The utility of a learning approach to manufacturing supervision may be demonstrated through
a case study in predicting a Henon process. The basic motivation and methodology behind the
case study is encapsulated in [Figure 11.

The overall structure of the simulation experiment is shown in [Figure 2]. The inputs into the
predictive system consists of two sources: a chaotic signal and a noise source. The chaotic signal
takes the form of the Henon model shown in [Figure 31.

The noise process was generated in two steps. as indicated in [Figure 4]. Once the probability
mass function was constructed, the data stream itself was generated through a Monte Carlo
simulation using a pseudorandom number generator.

The pseudorandom generator is a computational process employing data structures of fixed size
and therefore can assume only a finite number of potential values. Consequently, the generated
sequence is itself a chaotic stream. However, since the inherent dimensionality of the sequence is
high, the resulting process is statistically indistinguishable from pure noise such as that
originating from natural sources in the physical world

The primary data streams consisted of the Henon process H,. the noise process v, and

mixtures of the two. Each mixture consisted of a convex combination of the Henon and noise
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processes:
Xy = AcH+ (1“/‘:)01
The convex weight A, was a function of time. As shown in [Figure 5], the three mixed modes

consisted of a downward step function, a square function, and a tent function. Each of these 3
modes, plus the pure Henon and pure noise processes, constituted a total of 5 input data
patterns.

Each of the 5 signal modes was digested by several learning methods, then predicted
out-of-sample. One of the learning techniques was backpropagation (BPN), as illustrated in
[Figure 6). Another was the recurrent neural network (RNN) architecture. presented in [Figure
7). The third was a case based reasoning (CBR) approach, as indicated in [Figure 8.

As shown in [Figure 5J, a discontinuity occurred in the weight A, for all three mixing modes

at period t = 1500. A series of exploratory charts are shown in Figure [9] through [13] in the
vicinity of the discontinuity. The mixed signal modes displayed in Figures [10]. (117 and [12]
appear to change character to a certain degrees.

The test phase involved 200 forecasts from period 2800 to 3000. Out of these forecasts. the
first 50 results are portrayed in [Figure 141 for the pure Henon process. The forecasts for this
chaotic process, although generated out of sample, are remarkably accurate. However, the
accuracy drops dramatically for each of the 4 other signal modes, as shown in Figures {15]
through [18].

The difference in performance across signal modes is highlighted in [Figure 18], which presents
the results according to the metric of mean absolute percent error (MAPE). As expected. the
worst performance was due to pure noise, while the best accuracy resulted from the pure Henon
process.

[Figure 20] compares results according to the hit rate (HR), or proportion of correct
directional forecasts regarding a subsequent rise or fall in the value of a particular signal mode.
The same qualitative inferences can be made here as for the differential results according to
MAPE.

A more accurate set of results are listed in (Table 1> according to the metric of MAPE.
{Table 2> presenteds a similar chart for the hit rate.

In {Table 3> an analysis of variance for the data behind {Table 1> indicates that the
differences due to signal mode and to learning technique are both significant. Moreover, the
interaction effects are also statistically significant.

(Table 4> presents a chi-square test for the hit rates from <Table 2). According to the test.
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the interaction effects are significant at level p < 0.03.

One interesting issue relates to the choice of a good architecture for the CBR model. [Figure
91] presents the metric of MAPE as function of the locality L for each signal mode, holding the
input vector size fixed at D = 2. The results indicate that the optimal architecture depends in
part on the particular signal mode to be predicted.

[Figure 22) shows a similar chart for D = 4. The qualitative inferences are the same as for
D = 2 in the previous figure.

[Figure 23] presents the hit rate for CBR as a function of the locality L when the input
vector size is fixed at D = 2. On the whole. the accuracy tends to rise with the size of the
neighborhood. A similar chart for D = 4 in [Figure 24], however, reveals that accuracy
depends both on the signal mode and the size of the locale.

{Table 5> presents a set of pairwise comparisons across environmental scenarios for BPN. For
instance, the first cell indicates that the MAPE for the pure Henon process using BPN is
0.011%. while that for the step mode is 0.113%. Further, the difference is significant at
p < 0.001. The step mode is similar to the pure Henon process, except that half of the signal

is comprised of noise after ¢ = 1500. Consequently, a 50% dilution of the Henon process by
noise results in a significant difference in forecasting accuracy. To take another instance from
{Table 5, there is no significant difference in performance between the step and tent signal
modes when BPN is used.

(Table 6) presents similar data for BPN according to hit rates. Tables (7> and <8) enumerate
the pairwise differences in environmental scenarios for RNN according to the criteria of MAPE
and HR, respectively. A similar pair of charts is presented in Tables {9 and <10> for CBR.

The hit rate measures the accuracy of forecasts but ignores the mistakes. The proportions of
Type I and Type II mistakes for the pure Henon process are listed for each learning technique
in (Table 11>. The results indicate that CBR dominates the other two techniques for the Henon
signal. Similar charts in Tables <12 to <{15) enumerate respectively the comparative performance
in forecasting the four other signal modes.

{Figure 25) offers a pictural representation of the Type I and Type II errors for the Henon
signal. The chart highlights the fact that all techniques perform well for the pure Henon mode.

Figures <26> through <29 present the mistake charts due to the four other signal modes.
Overall, the charts indicate the absence of a clear-cut winner in the context of classification

mistakes.
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CONCLUSION

The complexity inherent in a learning system for manufacturing automation can be addressed
by the judicious use of a spectrum of advanced methodologies from data mining. A number of
predictive methodologies were evaluated in the context of prediction for production supervision.
The utility of these approaches was tested through a simulation model. The results support the
feasibility of developing learning systems to support the prediction and control of general
manufacturing processes, including chaotic behavior.

Future work will involve more sophisticated models of system behavior and predictive methods
as well as their incorporation into control strategies. The longer-term goal is to develop a general
knowledge-based system which can learn to supervise manufacturing processes regardless of the

type of behavior exhibited by the production plant.
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Purpose

@ To investigate the robustness of learning methods when the underlying
system changes character

Methodology

& Simulation of system events (e.g. service request., malfunctions, etc.)
with chaotic interarrival times and stochastic noise

Types of Inputs

¢ Primary inputs
- Henon : H,;

- Noise : v,

& Weighting factor : 4,
- Observed time series is weighted sum of primary inputs :
Xy = /szt+(1_/{t) vy

{Figure 1] Highlights of the study.
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Noise

V)

Signal Predictive ——————— Forecast

Ht) + x(t) system

[Figure 21 Schenatic of the simulation model.

(t+1) = 1—ax (D + (D)

wWt+1) = bx(D

[Figure 3] The Henon model. The parameter values a = 14 and b = 03
result in chaotic behavior.
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[Figure 4] Generation of random inputs representing noise. (a) The
probability mass function was generated by procuring a
sequence of numbers from a random number table, then
dividing by their collective sum. (b) The cumulative
distribution function resulted from summing the probability
mass function. Monte Carlo simulation was used to obtain a
value for F(x), from which the inverse F'(x) vielded a value
for the noise input.
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(a) Step function
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(Figure 5] Variation in weighting factor as a function of time.
The weighting factor A, is used 1o generate a

mixed input stream composed of primary and noise
sources.
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Output
layer

Hidden
layer

Input
layer

[Figure 6] Architecture of the backpropagation (BPN) neural network for the
case of two inputs, 3 hidden nodes, and a single output cell.
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[Figure 7] Architecture of the recurrent neural network (RNN).
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[Figure 8] Schematic of the case based reasoning (CBR) approach. In comparing
CBR against the other learning methods, the following architecture was

used: number of neighbors L = 3 and input vector size L = 4.
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[Figure 9] Partial sequence of a deterministic chaotic series under the Henon model. For
pictorial clarity, only a subset of the data series is shown: the 40 points
straddling the critical period t = 1500, ranging from 1481 to 1520.
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[Figure 10] Partial plot of the modified input stream due to the step function in Figure
5(a). The partial plot covers 20 points to either side of the discontinuity in A,

at ¢t = 1500.
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[Figure 11] Partial plot of the square signal mode. The partial plot covers 20 points to
either side of the discontinuity at ¢ = 1500.
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[Figure 12] Partial plot of the tent signal mode. The partial plot covers 20 points to either
side of the discontinuity at ¢+ = 1500,
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[Figure 13] Partial plot of the pure noise process.
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[Figure 141 Plot of forecasts for the pure Henon model using various methods. The test
period runs from period 2801 to 3000. For pictorial clarity, however, only the
first 50 forecasts are shown.
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[Figure 15] Plot of forecasts for step model using various learning techniques. The test period
runs from period 2801 to 3000, but only the first 50 forecasts are shown.
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[Figure 161 Plot of forecasts for sguare model using various methods. The test period runs

from period 2801 to 3000, but only the first 50 forecasts are shown.
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[Figure 17] Plot of forecasts for the tent mode using various methods. The test period runs
from period 2801 to 3000, but only the first 50 forecasts are shown
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[Figure 18] Plot of forecasts for the pure noise mode using various methods. The test period
runs from period 2801 to 3000, but only the first 50 forecasts are shown.
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[Figure 19] Plot of mean square errors (MAPE) under varying levels of noise.
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[Figure 201 Plot of hit rate (HR) under varying levels of noise.
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[Figure 211 MAPE of forecasts using CBR as a function of the number L of
neighbors and a fixed size (D = 2) for the input vector.
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[Figure 22] MAPE of forecasts using CBR as a function of the number L of
neighbors and a fixed size (D = 4) for the input vector.
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[Figure 23) HR of forecasts using CBR as a function of the number L of

neighbors and a fixed size (D = 2) for the input vector.
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and a fixed size (0 = 4) for the input vector.

(Figure 24] HR of forecasts using CBR as a function of the number L of neighbors
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[Figure 25] Mistake chart for the pure Henon model. Dashed lines indicates defauit
mistakes based on a constant prediction of Down or Up. For instance,
Default (1) is the expected Type | error due to a constant forecast of
Down. All the methodologies in the southwest region outperform the
default predictions.
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[Figure 26] Mistake chart for the step mode. Dashed fines indicates default mistakes
based on a constant prediction of Down or tp. For instance, Default (1)
is the expected Type | error due to a constant forecast of Down. All the
methodologies in the southwest region outperform the default predictions..
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[Figure 27] Mistake chart for the square mode.
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[Figure 28] Mistake chart for the tent mode.
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[Figure 29] Mistake chart for the noise mode.

(Table 1> Performance by technique and mixing mode according to the metric of
mean absolute percentage error (MAPE). Tables 1 through 6 examine the
issue of temporal robustness; that is, the stability of performance when a
technique is trained under a particufar set of conditions, then faces similar
or different circumstances.

Henon Step Square Tent No1ise
BPN 0.011366] 0.113030] 0.112430| 0.092981§ 0.177675
RNN 0.010869| 0.132187| 0.127962] 0.112924 ] 0.187926
CBR 0.001123] 0.104016| 0.114119| 0.084794 | 0.214353

(Table 2> Performance by technique and mixing mode according to the metric of hit

rate (HR).
Henon Step Square Tent Noise
BPN 0.995 0.780 0.770 0.945 0.725
RNN 0.985 0.730 0.760 0.835 0.730
CBR 1.000 0.800 0.810 0.925 0.670
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{Table 3> Two-way ANOVA for the data in Table 1: the input observations pertain
to the absolute percentage error (APE).

Source of
Variation

Main Effects
Technique
Mode
2-Way Interaction
Explained

Residual

Total

Sum of
D.F. Squares
6 10.660

2 0.095
4 10.565

8 0.257
14 10917
2985 22.459
2999 33.376

3000 cases (200*135 cases) were processed.

Mean
Squares

1.777
0.047
2.641
0.032
0.780

0.008

0.011

F
236.133
6.311
351.044
4.273

103.641

Sigof F
0.000
0.002
0.000
0.000

0.000

(Table 4> Chi-square test for the data in Table 2. Each cell entry denotes the

number of hits out of 200 trials.

Henon Step Square Tent Noise | Totals
BPN 199 156 154 189 145 843
RNN 197 146 152 167 146 808
CBR 200 160 162 185 134 841
Totals 596 462 468 541 425 2492

Chi— square statistic for independence

xz(r—l)(c—l) = 2 2%

=1 ;=1

where FE; = (row 7 total )(col. ; total )/grand total.

x5 = 2.289405.

p—value = (.029171
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(Table 5) Stability of BPN across environmental scenarios, according to the metric of
MAPE. Each cell contains 3 numbers in the format a : b (c). Here a is the
performance metric in the training phase, b the metric in the test phase,
and ¢ the level of significance due to a t-test for the difference of means.
Tables 5 through 10 represent an analysis of cross-sectional robustness for
each learning technique.

Henon Step Square Tent Noise

Henon - 0.011.0.113 0.011:0.112 0.011:0.092 0.011:0.177
(.000) (.000) (.000) (.000)

Step - _ 0.113:0.112 0.113:0.002 0.113:0.177
(.594) (.072) (.000)

Square - - - 0.112:0.092 0112:0.177
(.021) (.002)

Tent - - - _ 0.092:0.177
(.000)

Noise - - - - -

{Table 6> Stability of BPN across environmental scenarios, according to the metric of
HR. Each cell contains 3 numbers in the format a : b (c). Here a is the
performance metric in the training phase, b the metric in the test phase,
and ¢ the level of significance due to a test of proportions.

Henon Step Square Tent Noise

Henon _ 0.995:0.780 0.995:0.770 0.995:0.945 0.995:0.725
(1.02E-11) | (2.82E-12) | (0.003378) | (7.33E-15)

Step - - 0.780:0.770 0.780:0.945 0.780:0.725
(.810738) | (1.66E-06) (.202505)

Square - - - 0.770:0.945 0.770:0.725
(5.56E-07) (.300295)

Tent - - - _ 0.725:0.725
(3.1E-09)

Noise - - - - -
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{Table 7> Stability of RNN across environmental scenarios, according to the metric of MAPE.
Henon Step Square Tent Noise
Henon - 0.010:0.132 0.010:0.127 0.010:0.112 0.010:0.187
(.000) (.000) (.000) (.000)
Step _ _ 0.132:0.127 0.132:0.112 0.132:0.187
(.935) (.182) (.591)
Square R N - 0.127:0.112 0.127:0.187
(.230) (.658)
Tent _ _ _ _ 0.112:0.187
(.477)
Noise - - - - -
{Table 8) Stability of RNN across environmental scenarios, according to the metric of HR.
Henon Step Square Tent Noise
Henon - 0.985:0.730 0.985:0.760 0.985:0.835 0.985:0.730
(3.01E-13) | (1.53E-11) (1.6E-07) (3.01E-13)
Step _ _ 0.730:0.760 0.730:0.835 0.730:0.730
(.491268) (.010922) (3.01E-13)
Square - - - 0.760:0.835 0.760:0.730
(.061998) (.491268)
Tent - - - _ 0.835.0.730
(.010922)
Noise - - - - _

(Table 9) Stability of CBR across

environmental scenarios, agcording to the metric of MAPE,

Henon Step Square Tent Noise

Henon _ 0.001:0.104 0.001:0.114 0.001:0.084 0.001.0.214
(.000) (.000) (.000) (.000)

Step . - 0.104:0.114 0.104:0.084 0.104:0214
(.079) (.698) (.000)

Square - _ _ 0.114:0.084 0.114:0.214
(.200) (.000)

Tent - - - - 0.084.0.214
(.000)

Noise - - - - -
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(Table 10> Stability of CBR across environmental scenarios, according to the metric of HR.

Henon Step Square Tent Noise
Henon _ 1.000:0.800 1.000:0.810 1.000:0.925 1.000:0.670
(2.63E-11) | (2.63E-11) (1.4E-06) (.000)
Step - - 0.800:0.810 0.800:0.925 0.800:0.670
: (1.000) (.012888) (.001128)
- - - 0.810:0.925 0.810:0.670
Square (.012888) (.001128)
- - - _ 0.925:0.670
fent (2.08E-08)
Noise - - - - -

(Table 11> Types of error by methodology for the pure Henon mode. Type | (false rejection)

refers to a down prediction when the actual index rises: and Type Il (false
acceptance) refers to an up prediction when the actual index falls. For Tables
11 to 15, each entry denotes the proportion of mistakes over the trial period of
200 cases. The best performance for each mistake type is highlighted in bold.

Henon Type I Type 11
BPN 0.000 0.005
RNN 0.010 0.050
CBR 0.000 0.000

{Table 12> Types of error by methodology for the step mode.

Step Type 1 Type II
BPN 0.115 0.105
RNN 0.235 0.035
CBR 0.070 0.145
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(Table 13) Types of error by methodology for the square mode.

Square Type | Type 11
BPN 0.115 0.115
RNN 0.200 0.040
CBR 0.115 0.115

(Table 14> Types of error by methodology for the tent mode. .

Tent Type 1 Type II
BPN 0.050 0.005
RNN 0.150 0.015
CBR 0.045 0.045

{Table 15> Types of error by methodology for the pure noise mode.

Noise Typel Type Il
BPN 0.200 0.075

RNN 0.205 0.065

CBR 0.255 0.125




