• Title/Summary/Keyword: Channel number

Search Result 2,720, Processing Time 0.029 seconds

An Adaptive Mobility Estimator for the Estimation of Time-Variant OFDM Channels

  • Kim, Dae-jin;Kim, Cheol-Min;Park, Sung-Woo
    • Journal of Broadcast Engineering
    • /
    • v.6 no.1
    • /
    • pp.72-81
    • /
    • 2001
  • An adaptive channel estimation technique for OFDM-based DTV receivers is proposed using a new mobility estimator. Sample mean techniques for channel estimation have displayed good performance in slow fading channels, because averaging reduces noise In channel estimation operation. This paper suggests an algorithm which selects the optimal number of symbols within which the sample mean of consecutive pilot data can be obtained. The designed mobility estimator determines the optimal number by comparing mobility variance and estimated noise valiance. The algorithm using the mobility estimator obtains an optimal channel function under time-invariant or time-variant multipath fading channels, thereby making the best BER performance.

  • PDF

Experimental Analysis for Variation of Pressure Difference on Flooding in PEM Fuel Cell at Cathode Channel Outlet (Cathode 출구 압력 변화에 따른 PEM Fuel Cell 내에서의 플러딩에 관한 실험적 연구)

  • Ahn, Deuk-Keun;Han, Seong-Ho;Kim, Kyoung-Rock;Choi, Young-Don
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.5
    • /
    • pp.390-396
    • /
    • 2009
  • The flooding, especially in channel, is one of the critical issue to put proton exchange membrane fuel cell (PEMFC) to practical use. In this paper, channel flooding was investigated the pressure difference at cathode channel outlet. A ratio of pressure difference changes to 25, 50% as its variation rate. The pressure variable rate is reflected in dimensionless number FN. As a result, modified dimensionless number $FN^*$ correctly predicted the channel flooding. This study analyzes that a variety of pressure difference is how to affect flooding at the cathode of the PEMFC.

Effect of Inlet Velocity Distribution on the Heat Transfer Coefficient in a Rotating Smooth Channel (입구 속도 분포가 매끈한 회전유로 내 열전달계수에 미치는 영향)

  • Choi, Eun-Yeong;Lee, Yong-Jin;Jeon, Chang-Soo;Kwak, Jae-Su
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.6
    • /
    • pp.76-84
    • /
    • 2011
  • The effect of inlet velocity profile on the heat transfer coefficient in a rotating smooth channel was investigated experimentally. Three simulated inlet flow conditions of fully developed, uniform, and distorted inlet conditions were tested. The Reynolds number based on the channel hydraulic diameter was ranged from 10,000 to 30,000 and the transient liquid crystal technique was used to measure the distribution of the heat transfer coefficient in the rotating channel. Results showed that the overall heat transfer coefficient increased as the Reynolds number increased. Also, the distribution of the heat transfer coefficient was strongly affected by the inlet flow condition. Generally, the fully developed flow simulated condition showed the highest heat transfer coefficient.

Heat Transfer Characteristics of Radiation-Mixed Convection in a Three-Dimensional PCB Channel (3차원 PCB 채널내에서의 복사-혼합대류 열전달 특성)

  • Lee, J.H.;Park, K.W.;Pak, H.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.4
    • /
    • pp.561-575
    • /
    • 1996
  • The interaction of turbulent mixed convection and surface radiation in a three-dimensional channel with the heated blocks is analyzed numerically. Two blocks are maintained at high temperature and the other bottom and horizontal walls are insulated. S-4 method is employed to calculate the effect of the radiative heat transfer. The low Reynolds number k-$\varepsilon$ model proposed by Launder and Sharma is used to estimate the turbulent influence on the heat transfer enhancement. From above modeling, the effects of various channel specifications on the flow and heat transfer characteristics are investigated. The variables used for the present study are Reynolds number, block spacing, the channel height spacing for block and the emissivity. Average Nusselt numbers along the block surfaces are correlated and presented in terms of Reynolds number, emissivity and dimensionless geometric parameters. For the range of conditions in this study, average Nusselt numbers along the block surfaces are strongly influenced by the Reynolds numbers and channel height spacing for block but weakly influenced by the block spacing and the emissivity of the adiabatic walls.

  • PDF

Numerical Investigation of the Moving Wall Effects in Turbulent Channel Flows (난류채널유동에서 움직이는 벽면에 대한 수치연구)

  • Hwang, Jun Hyuk;Lee, Jae Hwa
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.3
    • /
    • pp.27-33
    • /
    • 2017
  • Direct numerical simulations of turbulent channel flows with moving wall conditions on the top wall are performed to examine the effects of the moving wall on the turbulent characteristics. The moving wall velocity only applied to the top wall with the opposite direction to the main flow is systematically varied to reveal the sustained-mechanism for turbulence. The turbulence statistics for the Couette-Poiseuille flow, such as mean velocity, root mean square of the velocity fluctuations, Reynolds shear stress and pre-multiplied energy spectra of the velocity fluctuations, are compared with those of canonical turbulent channel flows. The comparison suggests that although the turbulent activity on the top wall increases with increasing the Reynolds number, that on the bottom wall decreases, contrary to the previous finding for the canonical turbulent channel flows. The increase of the turbulent energy on the top wall is attributed to not only the increase of the Reynolds number but also elongation of the logarithmic layer due to increase of the wall layer on the top wall. However, because the logarithmic layer is shortened on the bottom wall due to the decrease of the wall layer, the turbulence energy on the bottom wall decreases despite of the increase of the Reynolds number.

Diversity-Multiplexing Tradeoff Analysis of Wireless Multiple-Antenna Cooperative Systems in General Fading Channels

  • Xu, Kun;Gao, Yuanyuan;Yi, Xiaoxin;Zhang, Yajun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.11
    • /
    • pp.3026-3045
    • /
    • 2012
  • In this paper, diversity-multiplexing tradeoff (DMT) of three-user wireless multiple-antenna cooperative systems is investigated in general fading channels when half-duplex and decode-and-forward relay is employed. Three protocols, i.e., adaptive protocol, receive diversity protocol, and dual-hop relaying protocol, are considered. The general fading channels may include transmit and/or receive correlation and nonzero channel means, and are extensions of independent and identically distributed Rayleigh or Rician fading channels. Firstly, simple DMT expressions are derived for general fading channels with zero channel means and no correlation when users employ arbitrary number of antennas. Explicit DMT expressions are also obtained when all users employ the same number of antennas and the channels between any two users are of the same fading statistics. Finally, the impact of nonzero channel means and/or correlation on DMT is evaluated. It is revealed theoretically that the DMTs depend on the number of antennas at each user, channel means (except for Rayleigh and Rician fading statistics), transmit and/or receive correlation, and the polynomial behavior near zero of the channel gain probability density function. Examples are also provided to illustrate the analysis and results.

Packet scheduling algorithm of increasing of fairness according to traffic characteristics in HSDPA (고속무선통신에서 트래픽 특성에 따른 공평성 증대를 위한 패킷 스케줄링 알고리즘)

  • Lee, Seung-Hwan;Lee, Myung-Sub
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.11
    • /
    • pp.1667-1676
    • /
    • 2010
  • In this paper, we propose a packet scheduling algorithm that assigns different number of HS-PDSCH(High Speed Primary Downlink Shared Channel) to the service user according to the received signal to interference ratio of CPICH(Common Pilot Channel) and to the traffic characteristics. Assigned channel number is determined by the signal to interference ratio level from CPICH. The highest signal to interference ratio user gets the number of channels based on the signal to interference ratio table and the remained channels are assigned to the other level users. Therefore the proposed scheme can provide the similar maximum service throughput and higher fairness than existing scheduling algorithm. Simulation results show that our algorithm can provide the similar maximum service throughput and higher fairness than MAX C/I algorithm and can also support the higher service throughput than proportional fairness scheme.

The Remodelling of Hydraulic Structure in a Distribution Channel for Improving the Equality of the Flow Distribution (I): Design Using CFD Simulation (수리구조 개선을 통한 분배수로 균등분배 성능 향상에 관한 연구(I) : CFD를 이용한 설계 중심으로)

  • Park, No-Suk;Kim, Seong-Su;Park, Jong-Yoon;Yoon, Cheol-Hwan;Kim, Chung-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.5
    • /
    • pp.571-579
    • /
    • 2007
  • This study was conducted to qualify the equality of the flow distribution from open channel between rapid mixing basin and flocculation basins in a domestic full-scale water treatment plant, and suggest a remedy for improving the equality. In order to evaluate the feasibility of the suggested remedy, computational fluid dynamics (CFD) technique are used, and for verifying the CFD simulation results wet tests were carried out for the pilot scale channel based on geometric similarity. From the results of CFD simulation and wet tests, it was investigated that the modification of hydraulic structure in the distribution channel, which is to install the longitudinal orifice baffle in flow direction, could improve the equality of the flow distribution. Also, in the case that Froude number is relatively small (Froude number <<0.03), the open ratio of orifices on the installed baffle hardly affects the equality of flow distribution.

Study of a Y-Channel Micromixer with Obstacles to Enhancing Mixing (Y-Channel 마이크로 믹서의 혼합 개선을 위한 연구)

  • Kim, Jin-Wook;Kim, Sang-Woo;Lee, Do-Hyung;Kang, Hyung-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.9
    • /
    • pp.851-857
    • /
    • 2010
  • In this study, an experiment was performed to obtain the optimum design of a passive micromixer for effective mixing by using a microsized device and rectangular obstacles; a low Reynolds number was maintained in the microchannel. The experiment was carried out by varying the number, size, and location of the rectangular obstacles. Further, the Y-channel's shape was optimized for maximizing the mixture ratio, which has limit qualification that an allowed value of pressure drop. The increase in the efficiency of mixing was observed to be greater than that in the case of circular obstacles by approximately 2.5%.

The Effect of Obstacle Number, Shape and Blockage Degree in Flow Field of PEMFC on its Performance

  • Zongxi Zhang;Xiang Fan;Wenhao Lu;Jian Yao;Zhike Sui
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.132-151
    • /
    • 2024
  • Proton exchange membrane fuel cell (PEMFC) has received extensive attention as it is the most common hydrogen energy utilization device. This research not only investigated the effect of obstacle number and shape on PEMFC performance, but also studied the effect of the blockage degree in the channel of PEMFC on its performance. It was found that compared with traditional scheme, longitudinally distributed obstacles scheme can significantly promote reactants transfer to catalyst layer, and the blockage degree in the channel effect PEMFC performance most. The scheme with 10 rectangular obstacles in single channel and 60% channel blockage had the best output performance and the most uniform distribution of reactants and products. Obstacle height distribution can significantly affect PEMFC performance, the blockage degree in the whole basin was large, particularly as the channel was blocked to higher degree in region 2 and region 3, higher net power density and better mass transfer effect can be obtained. Among them, the fuel cell with the blockage degree of 40%, 60% and 60% in region 1, region 2 and region 3 have the best PEMFC output performance and mass transfer, the net power density was 29.8% higher than that of traditional scheme.