• Title/Summary/Keyword: Channel materials

Search Result 893, Processing Time 0.026 seconds

Schottky barrier overlapping in short channel SB-MOSFETs (Short Channel SB-FETs의 Schottky 장벽 Overlapping)

  • Choi, Chang-Yong;Cho, Won-Ju;Chung, Hong-Bay;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.133-133
    • /
    • 2008
  • Recently, as the down-scailing of field-effect transistor devices continues, Schottky-barrier field-effect transistors (SB-FETs) have attracted much attention as an alternative to conventional MOSFETs. SB-FETs have advantages over conventional devices, such as low parasitic source/drain resistance due to their metallic characteristics, low temperature processing for source/drain formation and physical scalability to the sub-10nm regime. The good scalability of SB-FETs is due to their metallic characteristics of source/drain, which leads to the low resistance and the atomically abrupt junctions at metal (silicide)-silicon interface. Nevertheless, some reports show that SB-FETs suffer from short channel effect (SCE) that would cause severe problems in the sub 20nm regime.[Ouyang et al. IEEE Trans. Electron Devices 53, 8, 1732 (2007)] Because source/drain barriers induce a depletion region, it is possible that the barriers are overlapped in short channel SB-FETs. In order to analyze the SCE of SB-FETs, we carried out systematic studies on the Schottky barrier overlapping in short channel SB-FETs using a SILVACO ATLAS numerical simulator. We have investigated the variation of surface channel band profiles depending on the doping, barrier height and the effective channel length using 2D simulation. Because the source/drain depletion regions start to be overlapped each other in the condition of the $L_{ch}$~80nm with $N_D{\sim}1\times10^{18}cm^{-3}$ and $\phi_{Bn}$ $\approx$ 0.6eV, the band profile varies as the decrease of effective channel length $L_{ch}$. With the $L_{ch}$~80nm as a starting point, the built-in potential of source/drain schottky contacts gradually decreases as the decrease of $L_{ch}$, then the conduction and valence band edges are consequently flattened at $L_{ch}$~5nm. These results may allow us to understand the performance related interdependent parameters in nanoscale SB-FETs such as channel length, the barrier height and channel doping.

  • PDF

Analysis of Aluminum Powder Densification by Continuous Front Extrusion-Equal Channel Angular Pressing (등통로각압축이 결합된 압출 공정에 의한 알루미늄 분말의 치밀화 거동)

  • Yoon, Seung-Chae;Kim, Hyoung-Seop
    • Journal of Powder Materials
    • /
    • v.15 no.3
    • /
    • pp.204-209
    • /
    • 2008
  • Aluminum alloys are not only lightweight materials, but also have excellent thermal conductivity, electrical conductivity and workability, hence, they are widely used in industry. It is important to control and enhance the densification behavior of metal powders of aluminum. Investigation on the extrusion processing combined with equal channel angular pressing for densification of aluminum powders was performed in order to develop a continuous production process. The continuous processing achieved high effective strain and full relative density at $200^{\circ}C$. Optimum processing conditions were suggested for good mechanical properties. The results of this simulation helped to understand the distribution of relative density and effective strain.

Precision Molding of Polymeric Multi-Channel Optical Interconnection Devices Considering the Coefficient of Thermal Expansion of the Materials

  • Ahn, Seung-Ho;Han, Sang-Pil;Choi, Choon-Gi;Jeong, Myung-Yung
    • ETRI Journal
    • /
    • v.25 no.4
    • /
    • pp.266-269
    • /
    • 2003
  • Polymeric multi-channel optical interconnection devices that are usually fabricated by transfer molding are indispensable for parallel interconnection in high speed, high capacity optical communication systems. This paper proposes a design technique considering the thermal behavior of materials, such as shrinkage and expansion during the molding process, to satisfy geometrical requirements that have less than 1 ${\mu}m$ tolerance. We also designed molds considering the thermal effects of the materials and fabricated multi-channel optical fiber connectors that have less than 1 ${\mu}m$ tolerance.

  • PDF

Improving the Reliability by Straight Channel of As2Se3-based Resistive Random Access Memory (As2Se3 기반 Resistive Random Access Memory의 채널 직선화를 통한 신뢰성 향상)

  • Nam, Ki-Hyun;Kim, Chung-Hyeok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.6
    • /
    • pp.327-331
    • /
    • 2016
  • Resistive random access memory (ReRAM) of metallic conduction channel mechanism is based on the electrochemical control of metal in solid electrolyte thin film. Amorphous chalcogenide materials have the solid electrolyte characteristic and optical reactivity at the same time. The optical reactivity has been used to improve the memory switching characteristics of the amorphous $As_2Se_3$-based ReRAM. This study focuses on the formation of holographic lattices patterns in the amorphous $As_2Se_3$ thin film for straight conductive channel. The optical parameters of amorphous $As_2Se_3$ thin film which is a refractive index and extinction coefficient was taken by n&k thin film analyzer. He-Cd laser (wavelength: 325 nm) was selected based on these basic optical parameters. The straighten conduction channel was formed by holographic lithography method using He-Cd laser.$ Ag^+$ ions that photo-diffused periodically by holographic lithography method will be the role of straight channel patterns. The fabricated ReRAM operated more less voltage and indicated better reliability.

Finite Element Analysis of Continuous Rotary-Die Equal Channel Angular Pressing (연속 회전 등통로각압축 공정의 유한요소해석)

  • Yoon, Seung-Chae;Seo, Min-Hong;Kim, Hyoung-Seop
    • Transactions of Materials Processing
    • /
    • v.15 no.7 s.88
    • /
    • pp.524-528
    • /
    • 2006
  • Although equal channel angular pressing (ECAP), imposing large plastic shear strain deformation by moving a workpiece through two intersecting channels, is a promising severe plastic deformation method for grain refinement of metallic materials, its batch type characteristic makes ECAP inefficient for multiple-passing. Rotary-die ECAP (RDECAP) proposed by Nishida et al. can achieve high productivity by using continuous processing without taking out the samples from the channel. However, plastic deformation behavior during RD-ECAP has not been investigated. In this study, material plastic flow and strain hardening behavior of the workpiece during RD-ECAP was investigated using the finite element method. It was found that plastic deformation becomes inhomogeneous with the number of passes due to an end effect, which was not found seriously in ECAP. Especially, decreasing corner gap with increasing the number of passes was observed and explained by the strain hardening effect.

Preform Effect on the Plastic Deformation Behavior of Workpieces in Equal Channel Angular Pressing (Equal Channel Angular Pressing 가공 중 소성 변형에 미치는 재료의 초기 형상 효과)

  • Yoon, Seung-Chae;Seo, Min-Hong;Kim, Hyoung-Seop
    • Transactions of Materials Processing
    • /
    • v.15 no.5 s.86
    • /
    • pp.382-386
    • /
    • 2006
  • Preform design is an effective means of achieving the homogeneous deformation of workpiece materials and decreased load in metal forming. However, this approach has not been applied to equal channel angula. pressing (ECAP). In this paper, plastic deformation behavior of workpieces having four different preform shapes during ECAP was investigated using finite element analyses. The results indicated that a preform design of the workpiece head has a beneficial effect on homogeneous deformation, reducing the maximum pressing load at the initial stage and eliminating folding defects at strain concentration points.

Finite Element Analysis of Half Channel Angular Extrusion (HCAE) as a New Severe Plastic Deformation Process (새로운 강소성 가공 공정으로서 Half Channel Angular Extrusion(HCAE)의 유한요소해석)

  • Kim, K.J.
    • Transactions of Materials Processing
    • /
    • v.21 no.3
    • /
    • pp.164-171
    • /
    • 2012
  • This paper focuses on the development of a new SPD (severe plastic deformation) process named HCAE (half channel angular extrusion). HCAE technology is based on principled similar to ECAE, but imposes a larger amount and more effective plastic deformation on materials. The amount of shear deformation can be altered by varying the process parameters. Finite element analyses of HCAE were conducted in order to investigate the characteristics of deformation during HCAE and the simulated results show that the predicted value of imposed plastic strain in a single pass reaches 2.5.

High Performance of Printed CMOS Type Thin Film Transistor

  • You, In-Kyu;Jung, Soon-Won
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.17.2-17.2
    • /
    • 2010
  • Printed electronics is an emerging technology to realize various microelectronic devices via a cost-effective method. Here we demonstrated a high performance of p-channel and n-channel top-gate/bottom contact polymer field-effect transistors (FETs), and applications to elementary organic complementary inverter and ring oscillator circuits by inkjet processing. We could obtained high field-effect mobility more than $0.4\;cm^2/Vs$ for both of p-channel and n-channel FETs, and successfully measured inkjet-printed polymer inverters. The performance of devices highly depends on the selection of dielectrics, printing condition and device architecture. Optimized CMOS ring oscillators with p-type and n-type polymer transistors showed as high as 50 kHz operation frequency. This research was financially supported by development of next generation RFID technology for item level applications (2008-F052-01) funded by the ministry of knowledge economy (MKE).

  • PDF

Magnetic Sensor-Based Detection of Picoliter Volumes of Magnetic Nanoparticle Droplets in a Microfluidic Chip

  • Jeong, Ilgyo;Eu, Young-Jae;Kim, Kun Woo;Hu, XingHao;Sinha, Brajalal;Kim, CheolGi
    • Journal of Magnetics
    • /
    • v.17 no.4
    • /
    • pp.302-307
    • /
    • 2012
  • We have designed, fabricated and tested an integrated microfluidic chip with a Planar Hall Effect (PHE) sensor. The sensor was constructed by sequentially sputtering Ta/NiFe/Cu/NiFe/IrMn/Ta onto glass. The microfluidic channel was fabricated with poly(dimethylsiloxane) (PDMS) using soft lithography. Magnetic nanoparticles suspended in hexadecane were used as ferrofluid, of which the saturation magnetisation was 3.4 emu/cc. Droplets of ferrofluid were generated in a T-junction of a microfluidic channel after hydrophilic modification of the PDMS. The size and interval of the droplets were regulated by pressure on the ferrofluid channel inlet. The PHE sensor detected the flowing droplets of ferrofluid, as expected from simulation results. The shape of the signal was dependent on both the distance of the magnetic droplet from the sensor and the droplet length. The sensor was able to detect a magnetic moment of $2{\times}10^{-10}$ emu at a distance of 10 ${\mu}m$. This study provides an enhanced understanding of the magnetic parameters of ferrofluid in a microfluidic channel using a PHE sensor and will be used for a sample inlet module inside of integrated magnetic lab-on-a-chip systems for the analysis of biomolecules.

Fabrication of SOI FinFET devices using Aresnic solid-phase-diffusion (비소 고상확산방법을 이용한 MOSFET SOI FinFET 소자 제작)

  • Cho, Won-Ju;Koo, Hyun-Mo;Lee, Woo-Hyun;Koo, Sang-Mo;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.133-134
    • /
    • 2006
  • A simple doping method to fabricate a very thin channel body of the n-type fin field-effect-transistor (FinFET) with a 20 nm gate length by solid-phase-diffusion (SPD) process is presented. Using As-doped spin-on-glass as a diffusion source of arsenic and the rapid thermal annealing, the n-type source-drain extensions with a three-dimensional structure of the FinFET devices were doped. The junction properties of arsenic doped regions were investigated by using the $n^+$-p junction diodes which showed excellent electrical characteristics. Single channel and multi-channel n-type FinFET devices with a gate length of 20-100 nm was fabricated by As-SPD and revealed superior device scalability.

  • PDF