• Title/Summary/Keyword: Channel materials

Search Result 894, Processing Time 0.025 seconds

Effect of Annealing Temperature on Dynamic Deformation Behavior of Ultra-Fine-Grained Aluminum Alloys Fabricated by Equal Channel Angular Pressing (ECAP으로 제조된 초미세립 알루미늄 합금의 동적 변형거동에 미치는 어닐링 온도의 영향)

  • Kim, Yang Gon;Ko, Young Gun;Shin, Dong Hyuk;Lee, Chong Soo;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.9
    • /
    • pp.563-571
    • /
    • 2008
  • The influence of annealing treatment on dynamic deformation behavior of ultra-fine grained aluminum alloys was investigated in this study. After equal-channel angular pressing at $200^{\circ}C$, most of the grains were considerably reduced to nearly equiaxed grains of $0.3{\mu}m$ in size. With an increment of various annealing treatments for 1 hour, resultant microstructures were found to be fairly stable at temperatures up to $200^{\circ}C$, suggesting that static recovery would be dominantly operative, whereas grain growth was pronounced above $250^{\circ}C$. The tensile test results showed that yield and ultimate tensile strengths decreased, but elongation-to-failure and strain hardening rate increased with increasing annealing temperature. The dynamic deformation behavior retrieved with a series of torsional tests was explored with respect to annealed microstructures. Such mechanical response was analyzed in relation to resultant microstructure and fracture mode.

Three Dimensional FEM Simulation for Spinning of Non-circular Fibers

  • Kim, Heejae;Chung, Kwansoo;Youn, Jae-Ryoun
    • Fibers and Polymers
    • /
    • v.1 no.1
    • /
    • pp.37-44
    • /
    • 2000
  • A finite element method is employed fer a flow analysis of the melt spinning process of a non-circular fiber, a PET(polyethylene terephthalate) filament. The flow field is divided into two regions of die channel and spin-line. A two dimensional analysis is used for the flow within the die channel and a three dimensional analysis fur the flow along the spin-line. The Newtonian fluid is assumed for the PET melt and material properties are considered to be constant except for the viscosity. Effects of gravitation, air drag force, and surface tension are neglected. Although the spin-line length is 4.5 m only five millimeters from the spinneret are evaluated as the domain of the analysis. Isothermal and non-isothermal cases are studied fer the flow within the die channel. The relationship between the mass flow rate and the pressure gradient is presented for the two cases. Three dimensional flow along the spin-line is obtained by assuming isothermal conditions. It is shown that changes in velocity and cross-sectional shape occur mostly in the region of 1mm from the die exit.

  • PDF

A Study on Library Furniture to support Communication Channel (커뮤니케이션을 지원하는 도서관가구에 관한 연구)

  • Cheon, Hye-Sun;Lee, Jeong-Mi;Lim, Che-Zinn
    • Korean Institute of Interior Design Journal
    • /
    • v.18 no.3
    • /
    • pp.57-65
    • /
    • 2009
  • Library is a communication channel between book and human. Specially public library furniture plays an important role from every aspect in information materials and users, among users and in relationship between library managers and users. This study defined library furniture as a communication channel which connects library materials and users and was based on 35 local libraries and 12 overseas libraries. The author studied major elements and characteristics which constitute communication types among storage furniture, furniture in reading areas and furniture in digital reading area. The followings are the results from the study. First, storage furniture should be designed by reflecting characteristics of library materials and for effective delivering to the users. Therefore utmost communication can be made by searching for various designs in book-shelves and effective manner of display. Secondly, furniture in reading areas should support various users' needs from customized browsing to long hour studying and there should be properly supported for private space and correspondent reading postures. The third, there are needs for design conditions to support privacy and for comfort from long hour reading and mobility out of posture change in digital reading areas. The fourth, there should be ergonomically designed furniture plan and surroundings in public library which can boost various reading postures. Also furniture plan should be done by considering users' bodies and eyes orientations which can result in improved power of concentration.

Coating of LSM Ink in the Layered Planar Type SOFC (적층 평판형 SOFC에서 LSM 전극 코팅)

  • Lee, Sung-Il;Yeo, Dong-Hun;Shin, Hyo-Soon;Yoon, Young-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.7
    • /
    • pp.552-557
    • /
    • 2012
  • In this study, we have coated the inner surface of YSZ channel using LSM powder ink through depressurization process for making the cathode of a stacked planar-type SOFC module. To coat the surface of YSZ channel uniformly, we tried to find the optimum manufacturing condition for LSM ink. We used four different dispersants (BYK series) and two different solvents (ethanol and DMF) to make the LSM ink. It was revealed that the ink made with the ethanol solvent and the BYK-111 dispersant has the lowest viscosity, relatively low contact angle and most excellent dispersibility. After depressurizing a chamber filled with LSM ink and sintered YSZ channel, we have found that the YSZ channel was uniformly coated with LSM cathode. The LSM ink with 25 vol% BYK-111 showed the most uniform coating.

A Study on the Optimization of Deburring Process for the Micro Channel using EP-MAP Hybrid Process (전해-자기 복합 가공을 이용한 마이크로 채널 디버링공정 최적화)

  • Lee, Sung-Ho;Kwak, Jae-Seob
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.298-303
    • /
    • 2013
  • Magnetic abrasive polishing is one of the most promising finishing methods applicable to complex surfaces. Nevertheless this process has a low efficiency when applied to very hardened materials. For this reason, EP-MAP hybrid process was developed. EP-MAP process is expected to machine complex and hardened materials. In this research, deburring process using EP-MAP hybrid process was proposed. EP-MAP deburring process is applied to micro channel, thereby it can obtain both deburring process and polishing process. EP-MAP deburring process on the micro channel was performed. Through design of experiment method, error of height in this process according to process parameter is analyzed. When the level 1 parameter A(magnetic flux density) and level 2 parameter B(electric potential), C(working gap) and level 3 parameter D(feed rate) are applied in the deburring process using EP-MAP hybrid process, it provides optimum result of EP-MAP hybrid deburring process.

Effect of Equal Channel Angular Pressing Temperature on the Fracture and Mechanical Properties of Magnesium (마그네슘의 등통로각압축 시 파괴 및 기계적 특성에 미치는 공정온도 효과)

  • Yoon, S.C.;Bok, C.H.;Kwak, E.J.;Jeong, Y.G.;Kim, T.S.;Kim, H.S.
    • Transactions of Materials Processing
    • /
    • v.17 no.1
    • /
    • pp.13-18
    • /
    • 2008
  • Mg and Mg alloys are promising materials for light weight high strength applications. In this paper, grain refinement of pure Mg using severe plastic deformation was tried to enhance the mechanical properties of the hard-to-deform metallic material. The microstructure and the mechanical properties of Mg processed by equal channel angular pressing(ECAP) at various processing temperatures were investigated experimentally. ECAP with channel angle of $90^{\circ}$ and corner angle of $0^{\circ}$ was successful at $300^{\circ}C$ without fracture of the samples during the processing. The hardness of the ECAP processed Mg decreased with increasing ECAP processing temperature. The effect of temperature on the hardness and microstructure of the ECAP processed Mg were explained by the dislocation glide in the basal plane and non-basal slip systems and by the dynamic recrystallization and recovery.

Separation of Proteins Mixture in Hollow Fiber Flow Field-Flow Fractionation

  • Shin, Se-Jong;Nam, Hyun-Hee;Min, Byoung-Ryul;Park, Jin-Won;An, Ik-Sung;Lee, Kang-Taek
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.9
    • /
    • pp.1339-1344
    • /
    • 2003
  • Flow field-flow fractionation (FlFFF) is a technology to separate the molecules by size in an open channel. Molecules with different size have different diffusivities and are located vertically in different positions when passing through an open channel. In this study, hollow fiber membranes instead of conventional rectangular channels have been used as materials for the open channel and this change would decrease the cost of manufacturing. FlFFF is a useful technique to characterize the biopolymeric materials. Retention time, diffusion coefficients and Stokes radius of analysis can be calculated from the related simple equations. Hollow-fiber flow field-flow fractionation (HF-FlFFF) has been used for the characterization and separation of protein mixture in a phosphate buffer solution and has demonstrated the potential to be developed into a disposable FlFFF channel. The important indexes for the analytical separation are selectivity, resolution and plate height. The optimized separation condition for protein mixture of Ovalbumin, Alcohol dehydrogenase, Apoferritin and Thyroglobulin is ${\dot V}_{out}/{\dot V}_{rad}=0.65/0.85\;mL/min$.

Perceptions of the Knowledge of the Channel ⓔ as educational media for school teachers (<지식채널e>의 교육적 활용에 대한 교사 인식 연구)

  • Park, Yooshin;Na, Yeohoon;Jang, Eunju
    • Cartoon and Animation Studies
    • /
    • s.49
    • /
    • pp.425-464
    • /
    • 2017
  • The Knowledge of the Channel (e) is often used as educational materials; it delivers very short but compelling message of strong or interesting timeliness. However, as the media environment changes, expectations and demands for The Knowledge The Knowledge of the Channel (e) is used in school education and what should be improved upon to increase utilization of educational resources. We surveyed 361 elementary, middle and high school teachers and analyzed the frequency of using, approach and learning activities of The Knowledge of the Channel (e) in school education. We also analyzed difficulties in using it in the school and what improvements should be made. Result show that the frequency of using The Knowledge of the Channel (e) in school is highest in elementary schools, followed by middle school, and then high school. Teachers strongly consider curricular relevance when selecting broadcasting contents for education, and among programs of EBS(Educational Broadcasting System), most frequently use The Knowledge of the Channel (e). The The Knowledge of the Channel (e) is mainly used as an incentive for increasing motivation. When examined by elementary school curriculum, this material is highly utilized in subjects with content such as society, morality, and science, or with approaches that require various perspectives. However, it is difficult for teachers to find materials directly related to their classes, and since other media content similar to The Knowledge of the Channel (e) is abundant, the utilization of The Knowledge of the Channel (e) is decreasing. To improve this, The Knowledge of the Channel (e) needs to improve its platform and transformed the type of The Knowledge of the Channel (e) content being provided on social media.

Non-Overlapped Single/Double Gate SOI/GOI MOSFET for Enhanced Short Channel Immunity

  • Sharma, Sudhansh;Kumar, Pawan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.9 no.3
    • /
    • pp.136-147
    • /
    • 2009
  • In this paper we analyze the influence of source/drain (S/D) extension region design for minimizing short channel effects (SCEs) in 25 nm gate length single and double gate Silicon-on-Insulator (SOI) and Germanium-on-Insulator (GOI) MOSFETs. A design methodology, by evaluatingm the ratio of the effective channel length to the natural length for the different devices (single or double gate FETs) and technology (SOI or GOI), is proposed to minimize short channel effects (SCEs). The optimization of non-overlapped gate-source/drain i.e. underlap channel architecture is extremely useful to limit the degradation in SCEs caused by the high permittivity channel materials like Germanium as compared to that exhibited in Silicon based devices. Subthreshold slope and Drain Induced Barrier Lowering results show that steeper S/D gradients along with wider spacer regions are needed to suppress SCEs in GOI single/double gate devices as compared to Silicon based MOSFETs. A design criterion is developed to evaluate the minimum spacer width associated with underlap channel design to limit SCEs in SOI/GOI MOSFETs.

Performance and Thermal-Flow Characteristics in a Planar Type Solid oxide Fuel Cell with Single Channel and Multi-Channel (단일채널 및 다채널을 포함한 평판형 고체산화물연료전지의 열유동 해석 및 성능평가)

  • Ahn, Hyo-Jung;Cha, Suk-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.12
    • /
    • pp.1033-1041
    • /
    • 2007
  • This paper studied the characteristics of performance and temperature in a unit cell of a planar type SOFC under various conditions by employing computational fluid dynamics (CFD). In order to derive thermal stress distribution and performance characteristics, the 3-D model simulation for a single channel was performed in various conditions which include interconnect materials $(LaCrO_3/AISI430)$, gas flow direction (co-flow/counter-flow) and inlet temperature (923 K/1173 K). From these results of a single channel, the most effective conditions were applied to the unit stack with multi-channel and the temperature distribution is displayed. Considering both thermal stress and performance, the best combination is 923 K inlet temperature, counter-flow and interconnector of stainless steel. As the end results, flow, thermal and current density distributions were found in the model with multi-channel applied to the best combination and were concentrated in the middle of channels than in the edge.