DOI QR코드

DOI QR Code

Effect of Equal Channel Angular Pressing Temperature on the Fracture and Mechanical Properties of Magnesium

마그네슘의 등통로각압축 시 파괴 및 기계적 특성에 미치는 공정온도 효과

  • 윤승채 (충남대학교 대학원 나노소재공학과) ;
  • 복천희 (충남대학교 대학원 나노소재공학과) ;
  • 곽은정 (충남대학교 대학원 나노소재공학과) ;
  • 정영기 (한국 생산기술연구원) ;
  • 김택수 (한국 생산기술연구원) ;
  • 김형섭 (충남대학교 대학원 나노소재공학과)
  • Published : 2008.02.01

Abstract

Mg and Mg alloys are promising materials for light weight high strength applications. In this paper, grain refinement of pure Mg using severe plastic deformation was tried to enhance the mechanical properties of the hard-to-deform metallic material. The microstructure and the mechanical properties of Mg processed by equal channel angular pressing(ECAP) at various processing temperatures were investigated experimentally. ECAP with channel angle of $90^{\circ}$ and corner angle of $0^{\circ}$ was successful at $300^{\circ}C$ without fracture of the samples during the processing. The hardness of the ECAP processed Mg decreased with increasing ECAP processing temperature. The effect of temperature on the hardness and microstructure of the ECAP processed Mg were explained by the dislocation glide in the basal plane and non-basal slip systems and by the dynamic recrystallization and recovery.

Keywords

References

  1. S. Y. Chang, S. W. Lee, K.M. Kang, S. Kamado, Y. Kojima, 2004, Improvement of mechanical characteristic in severe plastic deformed Mg alloys, Mater. Trans., Vol. 45, pp. 488-492 https://doi.org/10.2320/matertrans.45.488
  2. S. Y. Chang, H. Tezuka, A. Kamio, 1997, Mechanical properties and structure of ignitionproof Mg-Ca-Zr alloys produced by squeeze casting, Mater. Trans., Vol. 38, pp. 526-535 https://doi.org/10.2320/matertrans1989.38.526
  3. M. Mabuchi, H. Iwahashi, K. Yanase, K. Higashi, 1997, Low temperature superplasticity in an AZ91 magnesium alloy processed by ECAE, Scripta Mater., Vol. 36, pp. 681-686 https://doi.org/10.1016/S1359-6462(96)00444-7
  4. A. Yamashita, Z. Horita, T. G. Langdon, 2001, Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation, Mater. Sci. Eng. A, Vol. 300, pp. 142-147 https://doi.org/10.1016/S0921-5093(00)01660-9
  5. S. R. Agnew, J. A. Horton, T. M. Lillo, D. W. Brown, 2004, Enhanced ductility in strongly textured Mg produced by equal channel angular processing, Scripta Mater., Vol. 50, pp. 377-381 https://doi.org/10.1016/j.scriptamat.2003.10.006
  6. D. W. Brown, S. R. Agnew, M. A. M. Bourke, T. M. Holden, S. C. Vogel, C. N. Tome, 2005, Internal strain and texture evolution during deformation twinning in magnesium, Mater. Sci. Eng. A, Vol. 399, pp. 1-12 https://doi.org/10.1016/j.msea.2005.02.016
  7. S. R. Agnew, P. Mehrotra, T. M. Lillo, G. M. Stoica, P. K. Liaw, 2005, Texture evolution of five wrought magnesium alloys during route a equal channel angular extrusion: Experiment and simulation, Acta Mater., Vol. 53, pp. 3135-3146 https://doi.org/10.1016/j.actamat.2005.02.019
  8. S. Ohsaki, S. Kato, N. Tsuji, T. Ohkubo, K. Hono, 2007, Bulk mechanical alloying of Cu-Ag and Cu/Zr two-phase microstructures by accumulative roll-bonding process, Acta Mater., Vol. 55, pp. 2885-2895 https://doi.org/10.1016/j.actamat.2006.12.027
  9. H. S. Kim, M. H. Seo, S. I. Hong, 2000, On the die corner gap formation in equal channel angular pressing, Mater. Sci. Eng. A, Vol. 291, pp. 86-90 https://doi.org/10.1016/S0921-5093(00)00970-9
  10. R. Z. Valiev, R. K. Islamgaliev, I. V. Alexandrov, 2000, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci., Vol. 45, pp. 103-189 https://doi.org/10.1016/S0079-6425(99)00007-9
  11. D. H. Shin, J. J. Park, S. Y. Chang, Y. K. Lee, K. T. Park, 2002, Ultrafine grained low carbon steels fabricated by equal channel angular pressing: microstructures and tensile properties, ISIC Int. Vol. 42, pp. 1490-1496 https://doi.org/10.2355/isijinternational.42.1490
  12. Y. C. Chen, Y. Y. Huang, C. P. Chang, P. W. Kao, 2003, The effect of extrusion temperature on the development of deformation microstructures in 5052 aluminium alloy processed by equal channel angular extrusion, Acta Mater., Vol. 51, pp. 2005-2015 https://doi.org/10.1016/S1359-6454(02)00607-9
  13. V. M. Segal, 1995, Materials processing by simple shear, Mater. Sci. Eng. A, Vol. 197, pp. 157-164 https://doi.org/10.1016/0921-5093(95)09705-8
  14. Y. Iwahashi, J. Wang, Z. Horita M. Nemoto, T. G. Langdon, 1996, Principle of equal-channel angular pressing for the processing of ultra-fine grained materials, Scripta Mater., Vol. 35, pp. 143-146 https://doi.org/10.1016/1359-6462(96)00107-8
  15. Jager, P. Lukac, V. Gartnerova, J. Bohlen, K. U. Kainer, 2004, Tensile properties of hot rolled AZ31 Mg alloy sheets at elevated temperatures J. Alloys Compounds, Vol. 378, pp. 184-187 https://doi.org/10.1016/j.jallcom.2003.11.173
  16. M. Chandrasekaran, Y. M. S. John, 2004, Effect of materials and temperature on the forward extrusion of magnesium alloys, Mater. Sci. Eng. A, Vol. 381, pp. 308-319 https://doi.org/10.1016/j.msea.2004.04.057
  17. H. Liu, Y. Chen, Y. Tang, S. Wei, G. Niu, 2007,Tensile and indentation creep behavior of Mg-5% Sn and Mg-5% Sn-2% Di alloys, Mater. Sci. Eng. A, Vol. 464, pp. 124-128 https://doi.org/10.1016/j.msea.2007.02.061
  18. Y. Wang, M. Chen, F. Zhou, E. Ma, 2003, High tensile ductility in a nanostructured metal, Nature, Vol. 419, pp. 912-915 https://doi.org/10.1038/nature01133
  19. J. Koike, 2003, New deformation mechanism in fine grain Mg alloys, Mater. Sci. Forum, Vol. 419- 422, pp. 189-194

Cited by

  1. Finite element analysis of the bending behavior of a workpiece in equal channel angular pressing vol.15, pp.2, 2009, https://doi.org/10.1007/s12540-009-0215-4