• Title/Summary/Keyword: Channel form

Search Result 815, Processing Time 0.02 seconds

A Study of Designing of Multi-Carrier CDMA System with Multi- Detector based on DGT

  • Kong, Hyung-Yun;Ho, Kwang-Chun
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.1343-1345
    • /
    • 2002
  • In this paper, we introduce the MC-CDMA (Multi-Carrier CDMA) system with MD (multi-detector). Due to unknown functional form of noise in wireless channel environments, it is not easy to design the detector through estimating the functional form of noise. Instead, we design the MD, which is constructed based on DGT (Data Grouping Technique) and quantiles estimated through RMSA (Robbins-Monro Stochastic Approximation) algorithm.

  • PDF

Closed-form for Bit Error Rate of MSK and OQPSK Systems with a Smart Antenna

  • Le Minh-Tuan;Pham Van-Su;Yoon Giwan
    • Journal of information and communication convergence engineering
    • /
    • v.3 no.4
    • /
    • pp.176-178
    • /
    • 2005
  • This paper presents closed-form expressions for exact bit error rate of MSK and OQPSK systems employing an adaptive antenna array at base station to eliminate co-channel interference. The channels under consideration are AWGN and one-path flat Rayleigh fading with AWGN. Computer simulation is carried out to confirm the theoretical results.

Optimization of the Number of Active Antennas for Energy-Efficiency in the MIMO Broadcast Channel (다중 사용자 다중 안테나 하향링크 채널에서 에너지 효율 향상을 위한 기지국 활성 안테나 수 최적화 기법)

  • Choi, Seungkyu;Kim, Dohoon;Lee, Chungyong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.5
    • /
    • pp.29-34
    • /
    • 2014
  • We introduce a number of antenna optimization problem for the zero-forcing beamforming (ZFBF) scheme to enhance energy-efficiency (EE) of the multiple-input-multiple-output broadcast channel. For proposed optimization problem, we assume an instantaneous channel gain of the ZFBF scheme as an average channel gain, given by $N_a-K+1$, in order to reduce a computational complexity of finding the number of active antennas $N_a$. Then, we convert a fractional-form objective function into a subtractive-form, and find a solution of $N_a$ and the maximum EE by an iterative process. Simulation results show that the maximum EE value obtained by proposed algorithm is almost identical to the optimal EE value by the exhaustive search method.

Opportunistic Beamforming with Link Anaptation Robust to Imperfect Channel Estimation (기회적 빔포밍 시스템에서 채널 추정에 강인한 링크 적응 기법)

  • Kim, Yo-Han;Kim, Dong-Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.8C
    • /
    • pp.617-626
    • /
    • 2008
  • Opportunistic Beamforming (OBF) offers a way to provide the multiuser diversity even in slow fading channel by using randomly generated beam weights, leading to the substantially reduced feedback in the form of the instantaneous SNR from users. In spite of the advantage of the reduced feedback, the imperfect channel estimation might influence the quality of the estimated SNR and channel scheduler so bad that the selected AMC level would be higher than the achievable rate of the actual channel, resulting the corruption of transmitted packet. In this paper, we propose a conservative link adaptation, where the estimated SNR is scaled down by a conservative factor which minimizes the variance of the maximum difference between the actual channel SNR and the resultant SNR. To support the proposed scheme, we analyze the statistics of the difference of the channel SNR and the estimated SNR. Simulation results show that the introduction of conservative factor achieves more than two-fold performance improvement in the presence of channel estimation error and the fairness of PF scheduler is maintained when the least squared channel estimator is applied.

Analysis of Channel Capacity for Spread Spectrum Watermarking Systems (대역확산 워터마킹 시스템의 채널용량 분석)

  • Kim, Joo-Chan;Bae, Jung-Nam;Kim, Jin-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.5C
    • /
    • pp.439-444
    • /
    • 2010
  • In this paper, we derive and analyze the channel capacity of the spread spectrum watermarking (SSW) system as an information-theoretic point of view in closed-form approximation formula in order to analyze the effect of the wireless multipath/shadowing channel. It is important to analyze the channel capacity to transmit an additive data through existing wireless channel by the SSW system. From the results, we confirm that the channel capacity of the SSW system can be determined by the HWR, WNR, PN length and host sampling frequency. Also, we verified that the variation of the channel capacity when the SSW system applied to Nakagami-m fading and Log-normal shadowing channel. The results of this paper can be applied to general spread spectrum watermarking system.

Numerical Study on Comparison of Serpentine and Parallel Flow Channel in High-temperature Proton Exchange Membrane Fuel Cells (고온형 고분자전해질형 연료전지에서의 사형 유로와 평행 유로 성능비교에 대한 수치해석적 연구)

  • AHN, SUNGHA;OH, KYEONGMIN;JU, HYUNCHUL
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.1
    • /
    • pp.41-55
    • /
    • 2018
  • General polymer electrolyte fuel cell (PEMFC) operates at less than $80^{\circ}C$. Therefore liquid phase water resulting from electrochemical reaction accumulates and floods the cell which in turn increases the mass transfer loss. To prevent the flooding, it is common to employ serpentine flow channel, which can efficiently export liquid phase water to the outlet. The major drawback of utilizing serpentine flow channel is the large pressure drop that happens between the inlet and outlet. On the other hand, in the high temperature polymer electrolyte fuel cell (HT-PEMFC), since the operating temperature is 130 to $180^{\circ}C$, the generated water is in the state of gas, so the flooding phenomenon is not taken into consideration. In HT-PEMFCs parallel flow channel with lower pressure drop between the inlet and outlet is employed therefore, in order to circulate hydrogen and air in the cell less pumping power is required. In this study we analyzed HT-PEMFC's different flow channels by parallel computation using previously developed 3-D isothermal model. All the flow channels had an active area of $25cm^2$. Also, we numerically compared the performance of HT-PEMFC parallel flow channel with different manifold area and Rib interval against the original serpentine flow channel. Results of the analysis are shown in the form of three-dimensional contour polarization curves, flow characteristics in the channel, current density distribution in the Membrane, overpotential distribution in the catalyst layer, and hydrogen and oxygen concentration distribution. As a result, the performance of a real area fuel cell was predicted.

Analysis of Performance Characteristics by Inner Flow Path of Side Channel Type Ring Blower (사이드 채널형 링블로워의 임펠러 내부 유로에 따른 성능변화 분석)

  • Lee, Kyoung-Yong;Choi, Young-Seok;Jeong, Kyung-Ho;Park, Woon-Jean
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.4
    • /
    • pp.67-71
    • /
    • 2012
  • This study analyzed performance changes by an inner flow path of impeller groove for side channel type ring blower using CFD. Two models have the same side channel and clearance while one has an inner flow path and the other doesn't. To analyze the performance change of a ring blower, overall performance and local flow field were analyzed. For the overall performance, pressure increase and impeller torque were checked under the design flow condition. Under the design flow condition, pressure increase was greater for the model with the inner flow path. The model with the inner flow path showed improved efficiency because the area subject to torque decreased due to the creation of inner flow path. To analyze local flow field, a section was created from the representative location of each impeller groove toward the direction of radius. Inner channel pressure distribution depending on the rotation direction shows that the model with the inner flow path has pressure equilibrium of working fluid through the inner flow path. Velocity distribution of inside impeller groove shows that flow field was coupled and appeared to form an inner wall where the flow field was stabilized.

Exact Error Rate of Dual-Channel Receiver with Remote Antenna Unit Selection in Multicell Networks

  • Wang, Qing;Liu, Ju;Zheng, Lina;Xiong, Hailiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3585-3601
    • /
    • 2016
  • The error rate performance of circularly distributed antenna system is studied over Nakagami-m fading channels, where a dual-channel receiver is employed for the quadrature phase shift keying signals detection. To mitigate the Co-Channel Interference (CCI) caused by the adjacent cells and to save the transmit power, this work presents remote antenna unit selection transmission based on the best channel quality and the maximized path-loss, respectively. The commonly used Gaussian and Q-function approximation method in which the CCI and the noise are assumed to be Gaussian distributed fails to depict the precise system performance according to the central limit theory. To this end, this work treats the CCI as a random variable with random variance. Since the in-phase and the quadrature components of the CCI are correlated over Nakagami-m fading channels, the dependency between the in-phase and the quadrature components is also considered for the error rate analysis. For the special case of Rayleigh fading in which the dependency between the in-phase and the quadrature components can be ignored, the closed-form error rate expressions are derived. Numerical results validate the accuracy of the theoretical analysis, and a comparison among different transmission schemes is also performed.

Underlay Cooperative Cognitive Networks with Imperfect Nakagami-m Fading Channel Information and Strict Transmit Power Constraint: Interference Statistics and Outage Probability Analysis

  • Ho-Van, Khuong;Sofotasios, Paschalis C.;Freear, Steven
    • Journal of Communications and Networks
    • /
    • v.16 no.1
    • /
    • pp.10-17
    • /
    • 2014
  • This work investigates two important performance metrics of underlay cooperative cognitive radio (CR) networks: Interference cumulative distribution function of licensed users and outage probability of unlicensed users. These metrics are thoroughly analyzed in realistic operating conditions such as imperfect fading channel information and strict transmit power constraint, which satisfies interference power constraint and maximum transmit power constraint, over Nakagami-m fading channels. Novel closed-form expressions are derived and subsequently validated extensively through comparisons with respective results from computer simulations. The proposed expressions are rather long but straightforward to handle both analytically and numerically since they are expressed in terms of well known built-in functions. In addition, the offered results provide the following technical insights: i) Channel information imperfection degrades considerably the performance of both unlicensed network in terms of OP and licensed network in terms of interference levels; ii) underlay cooperative CR networks experience the outage saturation phenomenon; iii) the probability that the interference power constraint is satisfied is relatively low and depends significantly on the corresponding fading severity conditions as well as the channel estimation quality; iv) there exists a critical performance trade-off between unlicensed and licensed networks.

Terabit-Per-Second Optical Super-Channel Receiver Models for Partial Demultiplexing of an OFDM Spectrum

  • Reza, Ahmed Galib;Rhee, June-Koo Kevin
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.334-339
    • /
    • 2015
  • Terabit-per-second (Tb/s) transmission capacity for the next generation of long-haul communication networks can be achieved using multicarrier optical super-channel technology. In an elastic orthogonal frequency division multiplexing (OFDM) super-channel transmission system, demultiplexing a portion of an entire spectrum in the form of a subband with minimum power is critically required. A major obstacle to achieving this goal is the analog-to-digital converter (ADC), which is power-hungry and extremely expensive. Without a proper ADC that can work with low power, it is unrealistic to design a 100G coherent receiver suitable for a commercially deployable optical network. Discrete Fourier transform (DFT) is often seen as a primary technique for understanding partial demultiplexing, which can be attained either optically or electronically. If fairly comparable performance can be achieved with an all-optical DFT circuit, then a solution independent of data rate and modulation format can be obtained. In this paper, we investigate two distinct OFDM super-channel receiver models, based on electronic and all-optical DFT-technologies, for partial carrier demultiplexing in a multi-Tb/s transmission system. The performance comparison of the receivers is discussed in terms of bit-error-rate (BER) performance.