• Title/Summary/Keyword: Channel adjustment

Search Result 96, Processing Time 0.022 seconds

Numerical Modelling of the Adjustment Processes of Minning Pit in the Dredged Channels (수치모의를 이용한 준설하천의 웅덩이 적응에 관한 연구)

  • Jang, Chang-Lae
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.10
    • /
    • pp.921-932
    • /
    • 2010
  • In this study, the adjustment processes of the disturbed channels by sand or gravel mining were investigated by a two dimensional numerical model in the generalized coordinate system. As a numerical scheme, the CIP (cubic interpolated pseudoparticle method) method was used to calculate the advection term in the flow field and central difference method was used to the diffusion term in it. The pit of the channel was partially filled with sediment at the toe of the pit upstream. As time increased, the headcut erosion upstream in the pit was decreased due to the sediment inflow. The almost inflow sediment upstream was trapped into the pit and the sediment deposit wedge migrated downstream in the pit with the steep submerged angle of repose. The numerical model was reproduced well the evolution processes of the channel. The mining pit migrated with speed as the channel was steep, and the numerical results were in overall agreement with the experimental results.

Experimental analysis on the channel adjustment processes by weir removal (실내실험에 의한 기능을 상실한 보 철거로 인한 하도의 적응과정 분석)

  • Jang, Chang-Lae;Lee, Kyung Su
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.11
    • /
    • pp.951-960
    • /
    • 2020
  • This study investigates the adjustment processes of the rivers after weir removal through laboratory experiments. Delta upstream eroded rapidly by flow at the initial stage of the experiments and the knickpoint migrates upward. Moreover, the knickpoint moves fast upward on the condition of alternate bars. The head cutting in the bed is developed fast at the initial stage. However, the erosion speed in the bed decreases with time. The well developed alternate bars migrates with keeping their shape downstream, and the bars affect the channel downstream to adjust new environments after weir removal. Maximum scouring depth downstream and the migration speed decrease over time after removing the weir. The scouring depth in the channel without alternate bars migrates with speed. However, the depth in the channel with alternate bars migrates slow downstream. The channel with alternate bars, in turn, is adjusted well to the new equilibrium states. The maximum scouring depth migrates downstream with time, and the scouring depth and its migration speed decreases with time. The dimensionless maximum scouring depth decreases with the migration speed of dimensionless maximum scouring depth because the deeply scoured places capture the sediments from upstream and the migration speed is slow as the places are filled with them. The dimensionless maximum scouring depth is shallow as the dimensionless backfilling speed is high. The dimensionless maximum scouring depth decreases rapidly less than 5 of dimensionless backfilling speed. However, the depth decreases slow more than 5 of it.

CORE AND SUB-CHANNEL EVALUATION OF A THERMAL SCWR

  • Liu, Xiao-Jing;Cheng, Xu
    • Nuclear Engineering and Technology
    • /
    • v.41 no.5
    • /
    • pp.677-690
    • /
    • 2009
  • A previous study demonstrated that the two-row fuel assembly has much more favorable neutron-physical and thermal-hydraulic behavior than the conventional one-row fuel assemblies. Based on the newly developed two-row fuel assembly, an SCWR core is proposed and analyzed. The performance of the proposed core is investigated with 3-D coupled neutron-physical and thermal-hydraulic calculations. During the coupling procedure, the thermal-hydraulic behavior is analyzed using a sub-channel analysis code and the neutron-physical performance is computed with a 3-D diffusion code. This paper presents the main results achieved thus far related to the distribution of some neutronic and thermal-hydraulic parameters. It shows that with adjustment of the coolant and moderator mass flow in different assemblies, promising neutron-physical and thermal-hydraulic behavior of the SCWR core is achieved. A sensitivity study of the heat transfer correlation is also performed. Since the pin power in fuel assemblies can be non-uniform, a sub-channel analysis is necessary in order to investigate the detailed distribution of thermal-hydraulic parameters in the hottest fuel assembly. The sub-channel analysis is performed based on the bundle averaged parameters obtained with the core analysis. With the sub-channel analysis approach, more precise evaluation of the hot channel factor and maximum cladding surface temperature can be achieved. The difference in the results obtained with both the sub-channel analysis and the fuel assembly homogenized method confirms the importance of the sub-channel analysis.

Flood Runoff Characteristics in Urbanized Basin (도시화 유역에서의 홍수 유출 특성)

  • 한국희;이길춘
    • Water for future
    • /
    • v.29 no.3
    • /
    • pp.153-161
    • /
    • 1996
  • This study is runoff analysis of the recently urbanized San Bon basin. The relationships between peak discharge and total discharge were examined by applying the ILLUDAS runoff analysis model to the measured data. In urbanized streams, it is found that channel adjustment had the most significant effect on the increase of peak discharge. Significant increases in the peak discharge occurred as rainfall duration or return period increases 10% and 7~16% increases in peak discharge were observed when the roughness coefficient were 0.04 and 0.015, respectively. When the natural river channel with n=0.04 was converted into a sewerage system of n=0.015 the peak discharge was greatly increased by 51~158%, Generally, flood peak discharge was increased during heavy rain, but in the case of urbanized basin, river stage was reduced owing to an increase of flow velocity by the adjustment of drainage system.

  • PDF

Correlation Analysis of Watershed Characteristics and the Critical Duration of Design Rainfall (설계강우의 임계지속기간과 유역특성인자의 상관성 분석)

  • Lee, Jung-Sik;Sin, Chang-Dong;Lee, Bong-Seok
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.711-714
    • /
    • 2008
  • The objective of this study is to analyze the relationship between the watershed characteristics and the critical duration of design rainfall. For estimation of critical duration, adjustment Huff's method and ILLUDAS urban runoff model were applied to urban 21 areas. Watershed characteristics such as area, channel length, channel slope, shape factor, and pipe density were used to simulate correlation analysis. The conclusions of this study are as follows; it is revealed that critical duration is influenced by the watershed characteristics such as pipe density, area and channel length. Also, multiple regression analysis using watershed characteristics is carried out and the determination coefficient of multiple regression equation shows 0.972.

  • PDF

Stereo-10.2Channel Blind Upmix Technique for the Enhanced 3D Sound (입체음향효과 향상을 위한 스테레오-10.2채널 블라인드 업믹스 기법)

  • Choi, Sun-Woong;Hyun, Dong-Il;Lee, Suk-Pil;Park, Young-Cheol;Youn, Dae-Hee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.5
    • /
    • pp.340-351
    • /
    • 2012
  • In this paper, we proposed the stereo-10.2channel blind upmix algorithm for the enhanced 3D sound. Recently, consumers want to enjoy better sound and the use of a various of multichannel configuration has been steadily improved. Thus, upmix algorithms have been researched. However, conventional upmix algorithms have the problem that distorts the spatial information of original source. To solve this problem and enhance the spatial sound quality, we proposed front and rear channel gain adjustment and 10.2 channel upmix algorithm for each additional channel. The listening test results show that it maintains spatial information of stereo input and enhances 3D sound effects unlike other conventional upmix algorithms.

An Alternating Equalizer with Differential Adjustment Based on Symbol Decisions by Soft/Hard Decision (연/경판정에 의한 심벌 판정 기반의 차등 조정 교번 등화기)

  • Oh, Kil-Nam
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.5
    • /
    • pp.2347-2352
    • /
    • 2012
  • In this paper, a new alternating equalizer and its differential adjustment algorithm are proposed. The proposed alternating equalizer achieves equalization effectively using an algorithm performing symbol decisions based on soft/hard decision. In addition, it is possible to improve the initial blind convergence speed and steady-state error performance simultaneously by adjusting the equalizer differentially according to the relative reliability of the symbol decisions by soft/hard decision devices. The simulation results on 16/64-QAM constellations under multipath propagation channel and additive noise conditions confirmed to support usefulness of the proposed method.

Real-time Synchronization Algorithm for Industrial Hybrid Networks: CAN and Sensor Networks (공장 자동화용 혼합형 네트워크를 위한 실시간 동기화 알고리즘의 성능 분석: CAN과 센서 네트워크)

  • Jung, Ji-Won;Kim, Dong-Sung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.2
    • /
    • pp.194-201
    • /
    • 2010
  • This paper discuss a performance evaluation of the synchronization algorithm for hybrid networks in industrial environments. The proposed algorithms minimizes synchronization errors which were caused from channel, Propagation, and frequency delays. The modified RBS and offset synchronization methods can be operated by adjustment parameters. The differential BP (Back-off Period) adjustment can synchronize the local time of each node with master node's time in hybrid networks. For the performance analysis, the data transmission time between the wired and wireless devices are investigated. The experimental results show the performance evaluations in terms of the polling service time and an average end-to-end delay.

Viterbi Decoder-Aided Equalization and Sampling Clock Recovery for OFDM WLAN (비터비 복호기를 이용한 OFDM-WLAN의 채널등화 및 샘플링 클럭추적)

  • Kim Hyungwoo;Lim Chaehyun;Han Dongseog
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.5 s.335
    • /
    • pp.13-22
    • /
    • 2005
  • IEEE 802.11a is a standard for the high-speed wireless local area network (WLAN), supporting from 6 up to 54 Mbps in a 5 GHz band. We propose a channel equalization algerian and a sampling clock recovery algorithm by utilizing the Viterbi decoder output of the IEEE 802.11a WLAN standard. The proposed channel equalizer adaptively compensates channel variations. The proposed system uses re-encoded Viterbi decoder outputs as reference symbols for the adaptation of the channel equalizer. It also extracts sampling phase information with the Viterbi decoder outputs for fine adjustment of the sampling clock. The proposed sampling clock recovery and equalizer are more robust to noise and frequency selective fading environments than conventional systems using only four pilot samples.

Adaptive Kernel Estimation for Learning Algorithms based on Euclidean Distance between Error Distributions (오차분포 유클리드 거리 기반 학습법의 커널 사이즈 적응)

  • Kim, Namyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.561-566
    • /
    • 2021
  • The optimum kernel size for error-distribution estimation with given error samples cannot be used in the weight adjustment of minimum Euclidean distance between error distributions (MED) algorithms. In this paper, a new adaptive kernel estimation method for convergence enhancement of MED algorithms is proposed. The proposed method uses the average rate of change in error power with respect to a small interval of the kernel width for weight adjustment of the MED learning algorithm. The proposed kernel adjustment method is applied to experiments in communication channel compensation, and performance improvement is demonstrated. Unlike the conventional method yielding a very small kernel calculated through optimum estimation of error distribution, the proposed method converges to an appropriate kernel size for weight adjustment of the MED algorithm. The experimental results confirm that the proposed kernel estimation method for MED can be considered a method that can solve the sensitivity problem from choosing an appropriate kernel size for the MED algorithm.